透過您的圖書館登入
IP:18.218.209.8
  • 學位論文

以萘醯亞胺雙吡啶與具取代基之對苯二甲酸製備鋅金屬有機框架 : 合成、結構鑑定、氣體吸附與揮發性有機物以及硝基化合物感測

Zinc-Organic Frameworks Constructed from a 1,8-Naphthalimide-Based Bispyridyl Ligand and 2-Substituted Benzene-1,4-dicarboxylic Acids: Synthesis, Structures, Gas Adsorption, and Detection of Volatile Organic Compounds and Nitro Compounds

指導教授 : 吳景雲

摘要


本研究透過鋅鹽、萘醯亞胺雙吡啶橋接配體N-(pyridin-3-ylmethyl)-4-(pyridin-4-yl)-1,8-naphthalimide (NI-mbpy-34)和二酸 (對苯二酸、2-胺基對苯二酸、2-硝基對苯二酸)利用溶劑熱反應合成出一系列金屬有機框架化合物 [Zn2(1,4-bdc)2(NI-mbpy-34)] (1,1,4-H2bdc = benzene-1,4-dicarboxylic acid)、[Zn2(NH2-1,4-bdc)2(NI-mbpy-34)] (2,NH2-1,4-H2bdc = 2-aminobenzene-1,4-dicarboxylic acid)、[Zn(NO2-1,4-bdc)(NI-mbpy-34)] (3,NO2-1,4-H2bdc = 2-nitrobenzene-1,4-dicarboxylic acid)。化合物1為具有孔洞性的三角稜柱型二維層狀結構,孔洞佔有率為24.8%。化合物2為具有孔洞性的簡單立方型三維層柱狀結構,具有二次互穿的特性,孔洞佔有率為27.0%。化合物3為簡單立方型三維層柱狀結構,不具有孔洞性。   化合物1、2表現出對CO2及N2的吸附能力,化合物1、2在195K、P/P0 = 1時對CO2的吸附值分別為69.5 cm3/g、94.4 cm3/g,在77K、P/P0 = 1時對N2的吸附值分別為24.7 cm3/g、9.5 cm3/g。 化合物1、3可用於偵測硝基化合物。有機金屬框架與硝基化合物透過分子間π–π作用力或是氫鍵彼此靠近,經電子轉移機制將主框架的電子轉移至缺電子的硝基化合物上,造成螢光焠熄,達到偵測的效果。螢光感測實驗證實化合物1、3之甲醇懸浮液加入2-硝基苯酚,3-硝基苯酚,4-硝基苯酚,4-硝基甲苯,2,4-二硝基甲苯和1,4-二硝基苯有明顯的螢光焠熄,但是加入硝基苯和烷基類硝基化合物如硝基甲烷和2,3-二甲基-2,3-二硝基丁烷則無法有相同的螢光焠熄效應,具有選擇性感測的潛力。 我們也研究了有機金屬框架化合物1和3對蒸氣相硝基及有機小分子的吸附能力,實驗結果顯示並無明顯的螢光焠熄表現,因此沒有感測能力。   對氣相碘分子之吸附研究顯示化合物1可吸附碘分子後並造成螢光焠熄達到50%以上,晶體顏色也明顯的轉變為咖啡色。此外,碘分子亦可完全自化合物1脫附,使化合物1具有重複使用的潛力。

並列摘要


A series of fluorescent metal-organic frameworks (MOFs) [Zn2(1,4-bdc)2(NI-mbpy-34)] (1, 1,4-H2bdc = benzene-1,4-dicarboxylic acid)、[Zn2(NH2-1,4-bdc)2(NI-mbpy-34)] (2, NH2-1,4-H2bdc = 2-aminobenzene-1,4-dicarboxylic acid)、[Zn(NO2-1,4-bdc)(NI-mbpy-34)] (3, NO2-1,4-H2bdc = 2-nitrobenzene-1,4-dicarboxylic acid) consisting of Zn(II), N-(pyridin-3-ylmethyl)-4-(pyridin-4-yl)-1,8-naphthalimide (NI-mbpy-34), and dicarboxylates were synthesized. Compound 1 is a 2D layer structure of trigonal prismatic cages with porosity of 24.8%. Compound 2 is a 3D primitive cubic type pillared-layer framework with porosity of 27.0%, which is 2-fold interpenetration. Compound 3 is a 3D nonporous primitive cubic type pillared-layer framework.  Compounds 1 and 2 have shown moderate CO2 adsorption abilities, with values of 69.5 cm3/g and 94.4 cm3/g, respectively, at 195 K and P/P0 = 1, but poor N2 uptakes, with values of 24.7 cm3/g and 9.5 cm3/g, respectively, at 77 K and P/P0 = 1. After adding nitro compounds to methanol suspensions of 1 and 3, their luminescence emissions would be efficiently quenched by a series of nitroaromatics, involving 2-nitrophenol (2-NP), 3-nitrophenol (3-NP), 4-nitrophenol (4-NP), 4-nitrotoluene (4-NT), 2,4-dinitrotoluene (2,4-DNT) and 1,4-dinitrobenzene (1,4-DNB), but not by nitrobenzene (NB) and aliphatic nitro compounds, such as nitromethane (NM) and 2,3-dimethyl-2,3-dinitrobutane (DMNB). We have further studied on vapor-sensing of 1 and 3 toward volatile nitro and organic compounds. The results show that the emissions of zinc MOFs did not effectively affected by both series of analytes, leading to inefficient detection for volatile nitro and organic compounds. Studies on adsorption of volatile iodine showed that 1 can adsorb iodine molecules, resulting in significant crystal color change from colorless to brown and more than 50% fluorescence quenching.

參考文獻


1. Lehn, J. M. Science 1985, 227, 849856.
2. (a) Desiraju, G. R. Crystal Engineering, Elsevier, Amsterdam, 1989. (b) Etter, M. C. Acc. Chem. Res. 1990, 23, 120126.
3. (a) Christoph, J. J. Chem. Soc. Dalton Trans. 2000, 38853896. (b) Ferguson, S. B.; Sanford, E. M.; Seward, E. M.; Diederich, F. J. Am. Chem. Soc. 1991, 113, 54105419.
4. Muller, P. Pure Appl. Chem. 1994, 66, 10771084.
5. McGuirk, C. M.; Katz, M. J.; Stern, C. L.; Sarjeant, A. A.; Hupp, J. T.; Farha, O. K.; Mirkin, C. A. J. Am. Chem. Soc. 2015, 137, 919–925.

延伸閱讀