透過您的圖書館登入
IP:18.188.24.36
  • 學位論文

奈米碳管及石墨烯夾層對氧化鋅奈米柱氫氣感測特性影響研究

Influence of Carbon Nanotube or Graphene Layers on The Characteristics of ZnO Nanorod-based Hydrogen Sensors

指導教授 : 陳祥

摘要


在本篇論文中,我們將氧化鋅奈米柱(ZnO nanorods)生長在二氧化矽(SiO2)基板上,利用旋轉塗佈(spin-coating)製作晶種層(seed layer),再使用水熱法(hydrothermal method)生長氧化鋅奈米柱,最後製成氫氣感測器。 為了改善氧化鋅奈米柱對於氫氣感測的特性,我們嘗試加入奈米碳管(CNT)與石墨烯(graphene)夾層後進行量測,結果可以發現兩種方式製作出的氫氣感測器電阻皆有明顯變化,其中加入奈米碳管的感測器更是表現出良好的氫氣感測器特性。 在材料分析的部分,我們利用了場發射電子顯微鏡(FESEM)觀察不同條件樣品的表面型貌、X光繞射(XRD)分析晶體結構、光致發光(PL)分析晶體缺陷,再進一步使用穿透式電子顯微鏡(TEM)觀察氧化鋅奈米柱細部結構、化學分析電子光譜(ESCA)分析元素組成。 我們相信這種低成本、低溫製程的氫氣感測器在現今需要大量使用氫氣的工業中能夠有很好的防災效果,在未來逐漸以氫氣為主的環保燃料電池中也可以佔有一席之地。

並列摘要


In this thesis, ZnO nanorods (NRs) were grown on SiO2 substrates by sol-gel/hydrothermal methods to form hydrogen gas sensing chips. To improve the hydrogen sensing capabilities, a layer of carbon nanotube (CNT) or a layer of graphene layer were sandwiched between the ZnO NRs and the SiO2 substrate, respectively. To characterize the ZnO NRs deposited in various conditions, multiple material analyses including field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), photoluminescence (PL), transmission electron microscope (TEM) and electron spectroscopy for chemical analysis (ESCA) were used to analyze the material properties. Results indicate that ZnO NRs incorporating CNT on top of the substrate could enhance carrier conduction near the interface and improve the sensing performance. Owing to low cost and simple fabrication, ZnO/CNT/SiO2-based hydrogen gas sensors are promising for future industrial hydrogen gas detection.

並列關鍵字

ZnO nanorods CNT hydrogen sensors SiO2

參考文獻


[1] B. Hameed, A. M. Din, and A. Ahmad, "Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies," Journal of hazardous materials, vol. 141, pp. 819-825, 2007.
[2] H. W. Kroto, A. Allaf, and S. Balm, "C60: Buckminsterfullerene," Chemical Reviews, vol. 91, pp. 1213-1235, 1991.
[3] S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, p. 56, 1991.
[4] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," science, vol. 306, pp. 666-669, 2004.
[5] R. Aiello, J. E. Fiscus, H.-C. zur Loye, and M. D. Amiridis, "Hydrogen production via the direct cracking of methane over Ni/SiO 2: catalyst deactivation and regeneration," Applied Catalysis A: General, vol. 192, pp. 227-234, 2000.

延伸閱讀