透過您的圖書館登入
IP:13.59.235.245
  • 學位論文

使用隨機森林演算法做煙火偵測

Fire and smoke detection using random forest algorithm

指導教授 : 石勝文

摘要


隨著電腦能力的進展,影像處理的技術和知識更加成熟,以及智能視頻監控式系統的功能也大大擴展。在這篇論文中,我們以隨機森林演算法為基礎,發展出一套基於視頻的 火災和煙霧偵測系統。我們利用煙火明顯的顏色和變化特性來選擇出候選區域,接著,針對候選區域分析紋理和運動模式的特徵來決定煙火區域。我們提出了使用局部二值模式 (LBP) 方法來擷取煙火紋理和運動模式的特徵,利用LBP特徵所訓練出來的隨機森林來做煙火偵測,以減少誤報也加強煙火辨識率。

並列摘要


Along with the progress of computer computation capabilities, sophisticated image processing/understanding methods have been developed and the functions of intelligent video surveillance systems have been greatly extended. In this thesis, we develop a video-based fire and smoke detection system based on the random forest algorithm. We use the distinct color and image variation properties of fire/smoke to select candidate regions. Then, image features of texture and motion patterns of the candidate regions are analyzed to determine any fire/smoke region. We propose to extract the features of both the texture and motion patterns of the fire/smoke with the local binary pattern (LBP) method. The random forest method is augmented to use the LBP features for fire/smoke detection to reduce false positive and enhance the fire and smoke detection rate.

參考文獻


[1] B. U. Toreyin, Y. Dedeo glu, and A. E. Cetin, “Flame detection in video using hidden
markov models,” in Proceedings of the IEEE International Conference on Image Processing,
pp. 1230 – 1233, 2005.
[2] H. Li, Q. Liu, and S. Wang, “A novel fire recognition algorithm based on flame’s multifeatures
fusion,” in Proceedings of the International Conference on Computer Communication

被引用紀錄


蔡子彥(2016)。結合隨機森林與複合態度模式探討國道客運創新服務發展與行銷策略之研究 – 以台北宜蘭線為例〔碩士論文,淡江大學〕。華藝線上圖書館。https://doi.org/10.6846/TKU.2016.00975

延伸閱讀