透過您的圖書館登入
IP:3.139.107.241
  • 學位論文

精簡型延遲重複利用的時脈扭曲補償及/或工作週期矯正電路

A Compact Delay-Recycled Clock Skew-Compensation And/Or Duty-Cycle-Correction Circuit

指導教授 : 王義明

摘要


時脈扭曲補償及/或工作週期矯正器常運用於雙緣觸發時脈同步系統中,有助於協助其效能之提升。傳統的時脈扭曲補償及/或工作週期矯正器之架構大多都採用直接串接之型式,此種做法衍生出不少的問題。其一為冗長的鎖定程序將導致整體電路之效能下降;其二為雙迴路之設計使得硬體複雜度增加。 本論文提出一個延遲重複利用的時脈扭曲補償及/或工作週期矯正電路,其具有兩個關鍵的設計觀念;首先是快速鎖定與低功率的量測-調整架構。次之為頻寬增廣技術。 綜合上述各項技術並相較於傳統的CSADCs電路,本電路在功率消耗方面約下降了4.24倍,在功率頻寬比上約下降了7.93倍,而在鎖定時間方面約可減少1.11倍。在TSMC 0.18-μm CMOS製程、操作電壓為1.8V時,HSPICE電路模擬結果顯示電路可操作輸入訊號頻率範圍為300MHz - 2GHz,且矯正後之輸出訊號工作週期變異範圍為48.41% - 55.51%。當系統操作於2GHz時,可接受之輸入工作週期範圍為30% - 70%,鎖定後最大相位誤差為67ps,功率消耗僅5.87mW。

並列摘要


A clock skew-compensation and/or duty-cycle correction circuit (CSADC) is indispensably required to maximize the performance of a synchronous double edge clocking system. Most conventional CSADC adopted a cascade structure that inherits a lower performance property that is causing a slower the locking procedure, meanwhile the dual loop design results in more design complexity. In this thesis, a compact delay-recycled CSADC was proposed. There are two significant design concepts in the CSADC. The first is a fast locking and low power measure-and-tuned architecture. The second is a bandwidth augmentation technique. Compared to conventional CSADCs, the proposed circuit achieves at least a 4.24 times reduction in power, a 7.93 times reduction in power bandwidth ratio, and a 1.11 times reduction in lock-in cycles. In TSMC 0.18-μm 1P6M 1.8V CMOS process, the “input signal frequency range” of the proposed CSADC from 300MHz to 2GHz, and the corrected duty cycle variation ranges from 48.41% to 55.51% are confirmed through HSPICE circuit simulation. When the clock frequency is 2GHz, the acceptable input duty cycles ranges from 30% to 70%. Besides, the aligned phase error and power consumption are 67ps and 5.87mW, respectively.

參考文獻


[1]Shao-Ku Kao and Shen-Iuan Liu, “All-digital fast-locked synchronous duty-cycle corrector,” IEEE Trans. on Circuits and Systems II, vol. 53, pp. 1363-1367, Dec. 2006.
[2]Dongsuk Shin, Janghoon Song, Hyunsoo Chae, Kwan-Weon Kim, Young Jung Choi, and Chulwoo Kim, “A 7 ps Jitter 0.053 mm2 Fast Lock All-Digital DLL With a Wide Range and High Resolution DCC,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2437-2451, Sep. 2009.
[3]Won-Joo Yun, Hyun Woo Lee, Dongsuk Shin, Shin Deok Kang, Ji Yeon Yang, Hyeng Ouk Lee, Dong Uk Lee, Sujeong Sim, Young Ju Kim, Won Jun Choi, Keun Soo Song, Sang Hoon Shin, Hyang Hwa Choi, Hyung Wook Moon, Seung Wook Kwack, Jung Woo Lee, Young Kyoung Choi, Nak Kyu Park, Kwan Weon Kim, Young Jung Choi, Jin-Hong Ahn, and Ye Seok Yang, “A 0.1-to-1.5GHz 4.2mW all-digital DLL with dual duty-cycle correction circuit and update gear circuit for DRAM in 66nm CMOS technology,” in Proc. ISSCC Digest of Technical Papers, Feb. 2008, pp. 282-283.
[4]L. Li, Hou-Ming Chen, and R. Chen-Hao Chang, “A low jitter delay-locked with a realignment duty cycle corrector,” in Proc. IEEE International SOC Conference, Sep. 2005, pp. 75-76.
[5]R. Swathi, M. B. Srinivas, “All digital duty cycle correction circuit in 90nm based on mutex,” in Proc. IEEE Computer Society Annual Symposium on VLSI, May 2009, pp. 258-262.

延伸閱讀