透過您的圖書館登入
IP:18.227.0.192
  • 學位論文

電漿輔助脈衝雷射沉積法製作氧化鋅薄膜抗反射鍍膜

The study of Zinc Oxide antireflection coatings using plasma-enhanced pulsed laser deposition

指導教授 : 蕭桂森
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


脈衝雷射沉積法(Pulsed laser deposition,PLD)是目前主要鍍膜方式其中一種,藉由利用高能量的脈衝雷射將靶材瞬間蒸發,使得靶材上的元素組成可完整的保持比例,完全的轉移至基板上。根據文獻,PLD可以在低真空或室溫環境下操作,這對於目前研究趨勢來說是不夠的,所以在本論文裡,嘗試改良舊有的PLD鍍膜方式。 電漿化學氣相沉積法(Plasma- enhanced chemical vapor deposition,PECVD)在利用化學反應的沉積過程中,使電漿參與了鍍膜過程,利用電漿將氣體分解,生成化學活性之活性種(radical)或是離子。 本論文主要研究利用PLD保持其原有的優點,結合PECVD中的射頻電漿輔助,形成了新的鍍膜系統,稱做電漿射頻輔助脈衝雷射沉積法(Plasma- enhanced pulsed laser deposition,PEPLD)。 本論文PEPLD,提供一創新的鍍膜技術,在室溫以及低真空度環境下,在各種基板上沉積並形成結構完整的奈米結構。在靶材的選擇上面,選用目前熱門材料氧化鋅,氧化鋅為一種寬能隙半導體(3.37ev),其化學性質穩定,且具有很高的熱穩定性、價格便宜等優點,也由於氧化鋅的奈米結構會因為製程參數的改變而有多種變化,形成奈米管、柱、線等多種結構。氧化鋅其諸多良好性質,可以廣泛的應用於各層面上,例如LED、TCO、SAW、太陽能電池及抗反射膜等應用。固計劃首先著重在藉由新式沉積方式所製做出的氧化鋅奈米結構,透過觀察其實驗中實際反射圖譜、厚度與理論反射圖譜、厚度比對,並試圖找出最佳化實驗參數,且應用在太陽能電池中的抗反射層以提升太陽能電池轉換效率,最終實驗條件比較可看出,以相同製作出趨近波長550 nm反射率=0之ZnO理論厚度206.25 nm的前提下,PECVD+PLD相較於單純PEPLD有2大優勢:第1:省時間(100%);第2:省能源(22%)。

並列摘要


Pulsed laser deposition (PLD) is one of the main coating, by taking advantage of the high-energy pulse laser target instant evaporation on the target elements can maintain the proportion of complete, fully transferred to the substrate. According to the literature, PLD in low vacuum at room temperature, for the current research trends, it’s not enough, so in this thesis, try a modified old PLD coating way. The Plasma-enhanced chemical vapor deposition (PECVD) in the deposition process using a chemical reaction, so that the plasma involved in the coating process, the use of the plasma to the gas decomposition, generate the chemical activity of the active species (Radical)or ions. In this thesis, maintaining its original advantages of using PLD combination PECVD RF plasma assisted the formation of a new coating system, called Plasma-enhanced pulsed laser deposition (PEPLD). With the papers PEPLD, provide an innovative coating technology, deposited on a variety of substrates at room temperature and low vacuum environment and the formation of the structural integrity of nanostructures. Select the above, the choice of the target material the popular material zinc oxide, zinc oxide is a wide band gap the semiconductor (3.37ev), the nature of its chemical stability and high thermal stability, cheap, etc..Also due to the zinc oxide nanostructures will to change in the parameters of the process, there are a variety of changes in the formation of the nanotubes, columns, and other structures. Its many good properties of zinc oxide can be widely applied to various levels, such as LED TCO, SAW, solar cells and anti-reflective film.It plans to first focus system made by new deposition of zinc oxide nanostructures, through observation the actual reflection spectrum of their experiments, the thickness and theoretical reflection map, thickness than the right,and tried to find the optimal experimental parameters,and the application of the antireflective layer in the solar cell in order to enhance the conversion efficiency of solar cells,The ultimate experimental conditions can be seen making the same purpose under a wavelength of 550 nm Reflectance = 0 and the ZnO reasonable regardless of the thickness of 206.25 nm, PECVD + PLD compared to pure PEPLD have two big advantages: First: save time (100%); Second: save energy (22%).

參考文獻


[1] 陳維新, 「能源概論」, 高立圖書有限公司, 民國97 年2 月。
[2] Yu-hsiu Lin, Structure and properties of transparent conductive ZnO films
grown by pulsed laser deposition,UNIVERSITY OF BIRMINGHAM,2009
[3]國立交通大學奈米太陽能光電實驗室,2009
[4] Yun-Ju Lee,* Douglas S. Ruby, David W. Peters, Bonnie B. McKenzie, and

延伸閱讀