透過您的圖書館登入
IP:18.218.234.83
  • 學位論文

鐵芯式永磁同步伺服線性馬達應用於高精密度定位平台之運動控制與設計

High Precision Motion Control and Design in Position Platform for Linear Permanent-Magnet Iron Core Synchronous Motors

指導教授 : 陳美勇
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究之主要目的為建置一部高精密度定位控制平台,且為了達到次微米等級之精密控制,我們設計了四種控制器作為提升定位平台系統精密度的方法,分別為兩個系統主要控制器與兩個輔助控制器,其中主要控制器包含了PID控制器與適應性步階迴歸滑模控制器(ABSMC),而輔助控制器則有變速度控制器(VSC)與遞迴式類神經網路補償控制器(RNNC)。 在高精密度定位平台之控制性能中,有兩項控制性能是必備的,即高精密定位控制與高精密動態軌跡追蹤控制的能力。因此我們將比較兩個主控制器PID與ABSMC在上述兩項控制性能上的優劣,最後選定性能優者為本系統之主控制器。 當高精密度定位平台在執行定位控制的過程中,往往因為較嚴重的暫態超越量,影響定位控制的精密度,所以我們將系統主控制器結合VSC輔助控制器為系統暫態效能做改善。而在執行動態軌跡追蹤控制的過程中,其動態軌跡移動之反曲點通常會有較大的追蹤誤差出現,此也是造成定位平台精密度不足的主因,在此我們將系統主控制器結合RNNC輔助控制器,改善系統動態反曲點之最大誤差量。 本研究之高精密定位平台控制,主要由鐵芯式永磁同步伺服線性馬達作為驅動系統,其最大行程為200mm,而光學尺之精密度為0.1μm,在系統控制器設計方面,主要是採用LabVIEW 2010 Professional Development System,作為控制器程式設計之軟體與操作介面。

並列摘要


The main purpose of this study is to build a high precision positioning control platform. In order to achieve high-precision control, we designed four controllers to enhance the precision of the positioning platform to sub-micron level. These controllers can be divided into two categories of main controller and auxiliary controller. The main controllers contain a PID controller and an adaptive back-stepping sliding mode controller (ABSMC). As well as the auxiliary controllers contain a variable speed controller (VSC) and a recurrent neural network compensative controller (RNNC). High-precision positioning control and dynamic tracking control are the necessary abilities in high precision positioning control platform. For these reasons, we compared the PID and ABSMC the pros and cons of these two control performance. Then, we selected the excellent one to be the main controller of the system. The precision of positioning control is disturbed by serious transient overshoot in the positioning platform system. Therefore, we combined the main controller with the auxiliary controller of VSC to improve the transient performance of the system. However, in the process of dynamical tracking control, the maximum tracking errors usually appear in the dynamic inflection points. Therefore, we combined the main controller with the auxiliary controller of RNNC to improve the performance of dynamic inflection points. In this study, we chose the linear permanent-magnet iron core synchronous motors drive system on the positioning platform and the maximum stroke is 200mm. The resolution of the linear scale is 0.1μm. In the controller design, we utilize LabVIEW 2010 Professional Development System to program the system code and develop the human-machine interface.

參考文獻


[1] K. K. Tan, T. H. Lee, H. F. Dou, S. J. Chin, and S. Zhao, “Precision Motion Control With Disturbance Observer for Pulse width Modulated Driven Permanent Magnet Linear Motors,” IEEE Transactions on Magnetics, Vol. 39, no. 3, pp. 1818-1818, May 2003.
[2] R. Cao, and K. S. Low, “A Repetitive Model Predictive Control Approach for Precision Tracking of a Linear Motion System,” IEEE Transactions on Industrial Electronics, Vol. 56, no. 6, pp. 1955-1961, June 2009.
[3] C. C. Sung, and Y. S. Huang, “Based on Direct Thrust Control for Linear Synchronous Motor Systems,” IEEE Transactions on Industrial Electronics, Vol. 56, no. 5, pp. 1629-1639, May 2009.
[4] Z. Z. Liu, F. L. Luo, and M. A. Rahman, “Robust and Precision Motion Control System of Linear-Motor Direct Drive for High-Speed X–Y Table Positioning Mechanism,” IEEE Transactions on Industrial Electronics, Vol. 52, no. 5, pp. 1397-1363, October 2005.
[5] S. L. Chen, K. K. Tan, S. Huang, and C. S. Teo,“Modeling and Compensation of Ripples and Friction in Permanent Magnet Linear Motor Using a Hysteretic Relay,”IEEE/ASME Transactions on Mechatronics, Vol. 15, no. 4, pp. 586-594, August 2010.

延伸閱讀