透過您的圖書館登入
IP:3.135.202.224
  • 學位論文

透明導電層ITO生長機制與特性分析及太陽能電池應用

指導教授 : 胡淑芬
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究主要在於探討銦錫氧化物之光電特性,進而應用至矽奈米柱太陽能電池之上電極,電極主要功用為收集載子,因太陽能電池本身為吸收光並將光轉換為電之元件,因此其電極必須具備透光度極高特性,而電極本身導電度品質亦會影響到收集載子之效率,故高導電特性電極亦為必要條件。本研究之銦錫氧化物採用射頻磁控濺鍍法製作,經由一系列鍍膜參數探討出最佳鍍膜條件,再經由真空退火法尋I求最佳退火溫度與時間。基板溫度300℃濺鍍出之銦錫氧化物經過500℃、20分鐘真空退火後,於可見光區300 nm至700 nm波段之平均穿透率可高達90% 以上,而片電阻亦可低於10Ω/□。X-ray繞射分析部分,繞射峰包含(221)、(222)、(400)、(440)與(662),且可發現隨退火溫度上升,(222)繞射強度有漸增趨勢,其薄膜結晶性更佳,而薄膜表面粗糙度亦可低於2 nm。   銦錫氧化物應用於太陽能電池上電極,對於矽奈米柱直徑為400 nm之p+-i-n結構太陽能電池而言,整體光電流密度從4.47 mA/cm2提升至27.6 mA/cm2,光轉電效率從0.45% 提升至4.73%,此乃透明導電層大幅縮短了載子行走距離,使電極之載子收集效率提升而導致光電流大幅增加,光轉電效率亦上升十倍之多。

並列摘要


無資料

並列關鍵字

solar cell ITO

參考文獻


[6] T. Yagi, Y. Uraoka, T. Fuyuki, Solar Energy Mater. Solar Cells, 90, 2647–2656 (2006)
[7] F. C. Marques, IEEE Trans. Electron Devices, 45, 7 (1998)
[11] B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, Nature, 449, 18 (2007)
[12] K. Peng, X. W. and S. T. Lee, Appl. Phys. Lett. 92, 163103 (2008)
[14] L. Tsakalakos, J. Balch, J. Fronheiser and B. A. Korevaar, “Silicon nanowire solar cells”, Appl. Phys. Lett. 91, 233117 (2007)

延伸閱讀