透過您的圖書館登入
IP:18.221.112.220
  • 學位論文

含主族元素(硒、鍗)混合錳或鐵之金屬團簇羰機化合物:合成、反應性、物理性質及理論計算

Group 16 (Se or Te)−Containing Manganese or Iron Carbonyl Clusters: Synthesis, Reactivities, Physical Properties, and Theoretical Calculations

指導教授 : 謝明惠
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


1. Te/Fe/CO 系統之研究   當[TeFe3(CO)9]2−與不同比例之[Cu(MeCN)4][BF4]反應,分別可得到聚合物[{TeFe3(CO)9Cu}−]與TeFe3(CO)9Cu2(MeCN)2。藉由加入[TeFe3(CO)9]2−,TeFe3(CO)9Cu2(MeCN)2可擴核形成[{TeFe3(CO)9Cu}−]與[{TeFe3(CO)9}3Cu3]3−。若[TeFe3(CO)9]2−與AgNO3反應則生成[{TeFe3(CO)9}3Ag3]3−與[Te2Fe8(CO)24Ag3]2−。然而,當[TeFe3(CO)9]2−與Cu(OAc)反應,可生成[{TeFe3(CO)9Cu}2(OAc)]3−。利用[TeFe3(CO)9]2−與[Cu(MeCN)4][BF4]及一系列L (L = 1,2-Bis(diphenylphosphino)ethane (dppe)、4,4'-dipyridyl (dpy)、1,2-bis(4-pyridyl)ethane (bpea)、1,2-bis(4-pyridyl)ethene (bpee))於不同比例下反應,分別得到TeFe3(CO)9Cu2(dppe)、[{TeFe3(CO)9Cu}2(L)]2−以及聚合物[{TeFe3(CO)9Cu2}(dpy)1.5]、[{TeFe3(CO)9Cu2}(bpea)]。然而若以TeFe3(CO)9Cu2(MeCN)2與一系列含N之L配基 (L = dpy、bpea、pyrazine (pyz))反應,可生成一系列L串接TeFe3Cu的聚合物([{TeFe3(CO)9Cu2}(dpy)1.5]、[{TeFe3(CO)9Cu2}(bpea)]、[{TeFe3(CO)9Cu2}(bpea)2.5]、[{TeFe3(CO)9Cu2}(pyz)• THF]與[{TeFe3(CO)9Cu2}(pyz)]。此外,化合物之生成及相關性質藉由理論計算進一步驗證。 2. Se/Mn/CO 系統之研究   利用Se8與六當量的Mn2(CO)10於4M KOH的甲醇溶液下反應,可得到49電子的化合物[Se2Mn3(CO)9]2−,並且其可進一步與[Cu(MeCN)4][BF4]反應形成48電子的化合物[Se2Mn3(CO)9]−。相反地,[Se2Mn3(CO)9]−亦可藉由加入強鹼溶液逆反應生成[Se2Mn3(CO)9]2−。然而,當[Se2Mn3(CO)9]−與Se8於KOH的甲醇溶液下反應,可得到擴核的產物[Se6Mn6(CO)18]4−,其更可進一步與Se8反應,繼續擴核形成[Se10Mn6(CO)18]4−。而[Se10Mn6(CO)18]4−亦可由[Se2Mn3(CO)9]2−與Se8反應而得。反之,當[Se10Mn6(CO)18]4−於強鹼條件下與Mn2(CO)10反應,可降解形成[Se2Mn3(CO)9]2−及[Se6Mn6(CO)18]4−。此外,當[Se6Mn6(CO)18]4−與[Cu(MeCN)4][BF4]或Mn(CO)5Br反應,可生成氧化物[Se2Mn3(CO)9]−與[Se5Mn4(CO)12]2−。然而,將[Se10Mn6(CO)18]4−與[Cu(MeCN)4][BF4]或Mn(CO)5Br反應,則可分別得到化合物[Se5Mn4(CO)12]2−及[Se4Mn3(CO)10]−。化合物之生成、擴核及相關性質藉由理論計算進一步驗證。 3. Se/Mn/CO 系統之研究   利用Se8與Mn2(CO)10於4M KOH的甲醇溶液下反應,可得到新穎的化合物[Se10Mn6(CO)18]4−與[Se6Mn6(CO)18]4−。當[Se10Mn6(CO)18]4−進一步與O2或CH2Cl2反應時,分別可得到氧化物[Se5Mn4(CO)12]2−與[Se8Mn4(CO)12(R)2]2− (R = CH2, Cl)。 [Se8Mn4(CO)12(CH2)2]2−更可進一步與Se8或H2O反應,生成Se-或O-取代的產物[Se8Mn4(CO)12(R)2]2− (R = Se, O)。然而,當[Se6Mn6(CO)18]4−與O2、Se8或CH2Cl2反應時,則分別可得到O-或Se-嵌入的產物[Se6Mn6(CO)18(O)]4−、[Se10Mn6(CO)18]4−以及[Se5Mn4(CO)12]2−。其中,化合物[Se10Mn6(CO)18]4−、[Se6Mn6(CO)18]4−、[Se6Mn6(CO)18(O)]4−與[Se8Mn4(CO)12(R)2]2− (R = CH2, Se, O)符合電子計算並具有2個未成對電子。此外,化合物之生成及相關性質藉由理論計算進一步驗證。

並列摘要


1. Te/Fe/CO System   When [TeFe3(CO)9]2− was treated with [Cu(MeCN)4][BF4] in various ratios, a Te─Fe─Cu chain polymer [{TeFe3(CO)9Cu}−] and a neutral cluster TeFe3(CO)9Cu2(MeCN)2 were formed, respectively. TeFe3(CO)9Cu2(MeCN)2 underwent skeleton expansion to form polymer [{TeFe3(CO)9Cu}−] and cluster [{TeFe3(CO)9}3Cu3]3−, upon treatment with [TeFe3(CO)9]2−. When [TeFe3(CO)9]2− was reacted with AgNO3, cluster [{TeFe3(CO)9}3Ag3]3− and [Te2Fe8(CO)24Ag3]2− were obtained. However, when the reaction of [TeFe3(CO)9]2− with Cu(OAc) was carried out, cluster [{TeFe3(CO)9Cu}2(OAc)]3− was formed. Further, when [TeFe3(CO)9]2− was treated with [Cu(MeCN)4][BF4] and L (L = 1,2-Bis(diphenylphosphino)ethane (dppe), 4,4'-dipyridyl (dpy), 1,2-bis(4-pyridyl)ethane (bpea), and 1,2-bis(4-pyridyl)ethene (bpee)) in various ratios, a series of novel clusters TeFe3(CO)9Cu2(dppe), [{TeFe3(CO)9Cu}2(L)]2−, and polymers [{TeFe3(CO)9Cu2}(dpy)1.5] and [{TeFe3(CO)9Cu2}(bpea)] were formed, respectively. When TeFe3(CO)9Cu2(MeCN)2 was treated with L (L = dpy, bpea, and pyrazine (pyz)), a series of L-bridged TeFe3Cu polymers, [{TeFe3(CO)9Cu2}(dpy)1.5], [{TeFe3(CO)9Cu2}(bpea)], [{TeFe3(CO)9Cu2}(bpea)2.5], [{TeFe3(CO)9Cu2}(pyz)• THF], and [{TeFe3(CO)9Cu2}(pyz)] were constructed. Furthermore, the nature, formation, and physical property of the resultant clusters are discussed and elucidated on the basis of DFT calculations. 2. Se/Mn/CO System   The reaction of Se8 with 6 equiv of Mn2(CO)10 in concentrated KOH/MeOH solutions lead to the formation of cluster [Se2Mn3(CO)9]2−, which could be further reacted with [Cu(MeCN)4][BF4] to give [Se2Mn3(CO)9]−. [Se2Mn3(CO)9]− could also be reconverted to [Se2Mn3(CO)9]2− by the addition of KOH/MeOH solutions in MeCN. When [Se2Mn3(CO)9]− was treated with Se8 in a concentrated KOH/MeOH solution, a large cluster [Se6Mn6(CO)18]4− was produced, which could be further reacted with Se8 to give a larger cluster [Se10Mn6(CO)18]4−. [Se10Mn6(CO)18]4− could also be obtained from the reaction of [Se2Mn3(CO)9]2− with Se8. Conversely, [Se10Mn6(CO)18]4− could be reconverted to [Se2Mn3(CO)9]2− and [Se6Mn6(CO)18]4− by the addition of Mn2(CO)10 in a concentrated KOH/MeOH solution. Moreover, when [Se6Mn6(CO)18]4− was treated with [Cu(MeCN)4][BF4] or Mn(CO)5Br, clusters [Se2Mn3(CO)9]− and [Se5Mn4(CO)12]2− were produced. When [Se10Mn6(CO)18]4− was treated with [Cu(MeCN)4][BF4] or Mn(CO)5Br, clusters [Se5Mn4(CO)12]2− and [Se4Mn3(CO)10]− were formed. Furthermore, the nature, the cluster transformation, and electrochemical property of these resultant clusters are discussed and elucidated by DFT calculations. 3. Se/Mn/CO System   When Se8 was treated with Mn2(CO)10 in concentrated KOH/MeOH solutions, the novel hexamanganese clusters [Se10Mn6(CO)18]4− and [Se6Mn6(CO)18]4− were produced. When [Se10Mn6(CO)18]4− was reacted with O2 or CH2Cl2, cluster [Se5Mn4(CO)12]2− and [Se8Mn4(CO)12(R)2]2− (R = CH2, Cl) were formed, respectively. [Se8Mn4(CO)12(CH2)2]2− exhibited interesting reactivity toward Se8 and H2O to give the Se- and O-substituted clusters [Se8Mn4(CO)12(R)2]2− (R = Se, O), respectively. Interestingly, [Se6Mn6(CO)18]4− demonstrated contrasting reactivity toward O2, Se8, and CH2Cl2 to afford the O- and Se-inserted clusters [Se6Mn6(CO)18(O)]4−, [Se10Mn6(CO)18]4−, and [Se5Mn4(CO)12]2−, respectively. Clusters [Se10Mn6(CO)18]4−, [Se6Mn6(CO)18]4−, [Se6Mn6(CO)18(O)]4−, and [Se8Mn4(CO)12(R)2]2− (R = CH2, Se, O) were electron-precise species but found to possess unusual paramagnetic behaviors. The formation, reactivity, and magnetic property are investigated and elucidated by DFT calculations.

並列關鍵字

cluster transition metal main group element

參考文獻


(4) Stamatatos, T. C.; Teat, S. J.; Wernsdorfer, W.; Christou, G. Angew. Chem., Int. Ed. 2009, 48, 521.
(1) (a) Comprehensive Supramolecular Chemistry; Lehn, J.-M., Atwood, J. L., Davies, J. E. D., MacNicol, D. D., Vögtle, F., Eds.; Pergamon: Oxford, 1996. (b) Leininger, S.; Olenyuk, B.; Stang, P. J. Chem. Rev. 2000, 100, 853. (c) Glasson, C. R. K.; Lindoy, L. F.; Meehan, G. V. Coord. Chem. Rev. 2008, 252, 940. (d) Alexeeva, Yu. E.; Kharisovb, B. I.; Hernández Garcíab, T. C.; Garnovskiia, A. D. Coord. Chem. Rev. 2010, 254, 794. (e) Peng, R.; Li, M.; Li, D. Coord. Chem. Rev. 2010, 254, 1.
(2) (a) Claridge, S. A.; Castleman, Jr., A. W.; Khanna, S. N.; Murray, C. B.; Sen, A.; Weiss, P. S. ACS Nano 2009, 3, 244. (b) Tadokoro, M.; Yasuzuka, S.; Nakamura, M.; Shinoda, T.; Tatenuma, T.; Mitsumi, M.; Ozawa, Y.; Toriumi, K.; Yoshino, H.; Shiomi, D.; Sato, K.; Takui, T.; Mori, T.; Murata, K. Angew. Chem., Int. Ed. 2006, 45, 5144. (c) Yu, R.; Kuang, X.-F.; Wu, X.-Y.; Lu, C.-Z.; Donahue, J. P. Coord. Chem. Rev. 2009, 253, 2872. (d) Zang, L.; Che, Y.; Moore, J. S. Acc. Chem. Res. 2008, 41, 1596. (e) Rosi, N. L.; Eckert, J.; Eddaoudi, M.; Vodak, D. T.; Kim, J.; O’Keeffe, M.; Yaghi, O. M. Science 2003, 300, 1127. (f) Friese, V. A.; Kurth, D. G. Coord. Chem. Rev. 2008, 252, 199. (g) Kahn, O. Acc. Chem. Res. 2000, 33, 647. (h) Robin, A. Y.; Fromm, K. M. Coord. Chem. Rev. 2006, 250, 2127.
(3) (a) Bai, J.; Virovets, A. V.; Scheer, M. Science 2003, 300, 781. (b) Bai, J.; Virovets, A. V.; Scheer, M. Angew. Chem., Int. Ed. 2002, 41, 1737. (c) Lang, J.-P.; Xu, Q.-F.; Yuan, R.-X.; Abrahams, B. F. Angew. Chem., Int. Ed. 2004, 43, 4741.
(5) (a) Adams, R. D.; Captain, B. Acc. Chem. Res. 2009, 42, 409. (b) Adams, R. D.; Captain, B. Angew. Chem., Int. Ed. 2008, 47, 252. (c) Borovik, A. S. Acc. Chem. Res. 2005, 38, 54.

延伸閱讀