透過您的圖書館登入
IP:3.144.154.208
  • 學位論文

一維三元金屬介電質光子晶體頻帶增寬之研究

BAND GAP EXTENSION IN A ONE-DIMENSIONAL TERNARY METAL-DIELECTRIC PHOTONIC CRYSTAL

指導教授 : 吳謙讓
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


光子晶體是由兩個或是多個不同折射率物質的人造週期性介質堆疊,光子晶體存在著光子能隙,光子能隙廣泛應用在光子晶體元件上,在這篇論文我們首先探討一維三元光子晶體能隙增寬,其中每一個週期是由兩個介電質夾著金屬層的三元結構,我們將要討論兩個主題,首先探討增加金屬層會強烈地擴大光子晶體能隙,相較於沒有添加金屬層的光子晶體(介電質-介電質-光子晶體) 接著我們探討有效電漿頻率在三元結構中,我們發現有效電漿頻率隨著金屬層厚度的增大而增加,以上所有的分析是依據Abeles theory,這是個在處理多層介質系統中簡練確切的方法。

關鍵字

光子晶體 能隙 三元 一維 增寬 低頻截止頻率

並列摘要


A photonic crystal (PC) is an artificial medium with a periodic structure stacked by alternating two or more different materials with distinct refractive indices. It is known that there exist some photonic band gaps (PBGs) in a PC. Wide PBGs are usually needed in photonic applications. In this thesis, we investigate the band gap extension for a one-dimensional ternary PC, in which each period is made of a metal layer sandwiched by two dielectric layers. Two topics will be studied. First, it can be seen that the addition of metal layer will strongly enhance the PBG compared to that without metal layer, i.e., the dielectric-dielectric photonic crystal (DDPC). Next, we investigate the effective plasma frequency for such a ternary MDPC. We find that the effective plasma frequency increases with the increase in the thickness of the metal layer. All the above analyses are made based on the Abeles theory which is an elegant method in dealing with the multilayer system.

參考文獻


[1] J. W. Strutt, Lord Rayleigh, “On the maintenance of vibrations by forces of double frequency, and on the propagation of waves through a medium endowed with a periodic structure,” Phil. Mag., S.5, Vol. 24, 145-159, 1887.
[2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. Vol. 58, 2059-2062, 1987.
[3] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. Vol. 58, 2486-2488, 1987.
[7] Hsu, H.-T. and C.-J. Wu, “Design rules for a Fabry-Perot narrow band transmission filter containing a metamaterial negative-index defect,” Progress In Electromagnetics Research Letters, Vol. 9,101–107, 2009.
[8] Srivastava, R., K. B. Thapa, S. Pati, and S. P. Ojha, “Omni- direction reflection in one dimensional photonic crystal,” Progress In Electromagnetics Research B, Vol. 7, 133–143, 2008.

延伸閱讀