透過您的圖書館登入
IP:3.144.111.49
  • 學位論文

軟性及剛體基板之元件應力分析及模型設計

Stress Distribution and Model Design of the Devices on Flexible and Rigid Substrate

指導教授 : 李敏鴻 李昌駿
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


現今科技技術蓬勃發展、面板產業技術越趨成熟下,在大量製造競爭中我們開始要考慮到成本降低,才能在供給需求中達成平衡。再作製程之前一定會有樣本先去做測試,如何設計出一個好樣本讓我們去做測試,就端賴我們TCAD模擬去設計。顯示器發展已著重可攜帶性、輕巧等特性,要配合可以攜帶性就必需考慮到如何收納,有可能撓曲成一個圓筒收藏,這樣撓曲勢必產生應力對電性跟元件造成影響。本論文中所使用的TCAD軟體是專門模擬應力分析方面的,從建立模型、代入材料參數、設定內部應力(intrinsic stress)、施加邊界條件,一步步設定完成就可以達到我們想了解的應力值跟應變值,這對於我們了解元件真正發生應力集中及改善幫助不少。不僅如此,我們也可以改動裡面材料參數,馬上就可以模擬新特性的IC元件。 在本論文中,我們嘗試對許多不同類型的材料去做撓曲,像是 上閘極或是下閘極的非晶矽薄膜元件、太陽能電池,甚至鈦鋁夾層基板我們還模擬當它破裂時,所釋放出來的破裂能(Energy release rate)。仿照論文的驗證跟修改,我們期望這些數據能夠對於學術上應力分析能有所貢獻。

關鍵字

應力分析

並列摘要


The cost down is a critical issue for display industry and high density IC development. Before the product design, the TCAD simulation plays an important role to reduce R&D cycles and budget. For flexible display development, the characteristics are portable, lightweight, rugged, arbitrary sharpness, and unrestrained design. However, the electrical characteristics of TFTs may be degraded with mechanical bending, and leaded the panel failure. This paper used in TCAD software is specialized simulation of stress analysis from model building, incorporated into the material parameters, set intrinsic stress, imposed boundary conditions. Step by step, setup is completed that you can reach our want to know the stress and strain. It would help us to understand that the component of the stress concentration and improve IC model design a lot. Not only that, we can also change the material parameters, we can immediately simulate new features of IC components. In this paper, we try to do many different types of materials and bending on the different curvature, such as Top gate or bottom gate a-Si devices, solar cells, titanium or aluminum sandwich board. We also simulated the breakdown of the released energy (Energy release rate) when it broke down. Verifying and changing the model from paper, we expect this data that can contribute to stress analysis for the academic research.

並列關鍵字

無資料

參考文獻


[1] Cheng-Chung Lee, Yu-Yang Chang, Hua-Chi Cheng, Jia-Chong Ho and Janglin Chen, ”A Novel Approach to Make Flexible Active Matrix Displays,” Society for Information Display, pp.810-813, 2010.
[4] M. H. Lee, K.-Y. Ho, P.-C. Chena, C.-C. Cheng, S. T. Chang, M. Tang, M. H. Liao, and T.-H. Yeh, “Promising a-Si:H TFTs with High Mechanical Reliability for Flexible Display,” IEDM Digest of Technical Digest, pp. 299-302, 2006.
[5] Gregory P. Crawford, “flexible flat panel displays,” ch. 9, pp. 165.
[6] Hiroyuki Fujiwara, Michio Kondo and Akihisa Matsuda, “Stress-Induced Nucleation of Microcrystalline Silicon from Amorphous Phase,” J. Appl. Phys. Vol. 41, no. 5A, pp. 2821–2828, 2002.
[8] H. Gleskovaa, S. Wagner, and Z. Suo, “Failure Resistance of Amorphous Silicon Transistors under Extreme In-plane Strain,” Appl. Phys. Lett., vol. 75, no. 19, p. 3011, 1999.

延伸閱讀