透過您的圖書館登入
IP:3.134.118.95
  • 學位論文

人體端粒鳥嘌呤-四股結構去氧核醣核酸序列: 整體與單分子的研究

G-Quadruplex Structures of Human Telomeric DNA Sequences: Ensemble and Single Molecule Studies

指導教授 : 張大釗
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


真核細胞的端粒,對於染色體尾端穩定性是相當重要的。在有單價陽離子如鈉或鉀離子存在之下,端粒尾端富含鳥嘌呤單股的DNA序列,可以藉由Hoogsteen氫鍵形成一個二級結構稱之為鳥嘌呤-四股結構。為了驗證人類端粒是否具有鳥嘌呤-四股結構的存在,我們利用了雙光子激發螢光生命期顯微技術,來尋找人體鼻咽癌細胞,中期染色體之中鳥嘌呤-四股結構的位置所在。然而,富含鳥嘌呤序列,可以具有多樣性鳥嘌呤-四股結構,而且改變環境條件可能使其結構互相轉換。舉例來說,鈉鉀離子交換後,會產生一個快速的光譜變化。我們在此利用數種方法,來瞭解鈉鉀離子交換之中所引起的快速光譜變化,其中所隱含的機制。螢光共振能量傳遞與單分子栓球實驗的研究,暗示著這個因鉀離子所產生的快速光譜變化,有可能不是F1UFF2,須經由一個完全展開的中間態。此外,變換溫度的圓二色光譜研究顯示,F1與F2之間的能障幾乎可以忽略。因此,我們認為這個鈉鉀離子交換所產生的快速光譜變化,是由於F1到F2之間,經過了快速的鹼基位移與環的重組所造成的。另一方面,我們在脫水的環境中觀察到,由鈉離子溶液之中的反平行鳥嘌呤-四股結構,轉換為鉀離子溶液中的平行鳥嘌呤-四股結構。利用van’t Hoff的方法,在熱解旋曲線之中,來估計各個摺疊狀態到完全展開狀態之間其自由能的差別,以及利用Eyring的方法,以即時變溫圓二色光譜,來估計鳥嘌呤-四股結構變化所需的活化能,嘗試建立一個HT22在鈉離子溶液中加入脫水環境(40% (w/v) PEG 200)的反平行鳥嘌呤-四股結構,轉換到鉀離子溶液中平行鳥嘌呤-四股結構的熱力學能量圖。此外,由於Cu2+可以誘導鳥嘌呤-四股結構的崩解,再者,EDTA2-可以抑制Cu2+離子的作用,使鳥嘌呤-四股結構可以由展開狀態變回摺疊狀態,根據此方法,我們發現動力學產物在人體生理條件下比較容易生成。更進一步,利用Cu2+離子在室溫下誘導鳥嘌呤-四股結構展開,來作為篩選鳥嘌呤-四股結構配位基的一個新方法。因此,我們篩選出3,6,9三端取代的BMVC4分子,可以作為之後研究的重心。

並列摘要


Telomeres, the ends of eukaryotic chromosomes, are essential for the stability of chromosomes. In the presence of monovalent cations such as Na+ or K+, the G-rich single stranded DNA of telomere can form a secondary structure through Hoogsteen hydrogen bonds, termed G-quadruplex (G4). We have applied two-photon excitation fluorescence lifetime microscope (2PE-FLIM) to successfully verify and map the localizations of G4 structures in human nasopharyngeal carcinoma metaphase chromosomes. In addition, the G-rich sequences can adopt various G4 structures and possibly interconvert among these structures upon changing solvent and temperature conditions. For example, a fast spectral conversion occurs under Na/K cation exchange. We have developed a number of methods to elucidate the mechanisms of this spectral conversion. Ensemble-based fluorescence resonance energy transfer (FRET) and single molecule tethered particle motion (TPM) studies suggested that the fast spectral conversion is unlikely due to F1UFF2 via a totally unfolded intermediate induced by potassium cations. In addition, temperature-dependent circular dichroism (CD) studies suggested that the energy barrier from F1 to F2 is almost negligible. Thus, we consider that the fast spectral conversion during Na/K cation exchange is due to F1F2 via rapid base shift and loop rearrangement. On the other hand, the structural conversion from the antiparallel G4 structure in Na+ solution to the parallel G4 structure in K+ solution was observed in the presence of dehydrated reagents. Using thermodynamic and kinetic studies, a free energy diagram can be tentatively established for the structural conversion of HT22 from antiparallel form in Na+ solution to the parallel in K+ solution at 25℃ under 40 % (w/v) PEG 200 condition. It is known that the Cu2+ induces the unfolding of G4 structure while addition of the EDTA2- can chelate the Cu2+ to reverse the unfolded state to the folded state. Based on this and we found that the kinetic product is likely to play a major role in physiological condition. Furthermore, G4 stabilizers are screened by a novel method based on Cu2+ -induced G4 unfolding at room temperature. Thus, 3,6,9 tri-substitution of BMVC4 core molecules are ready to prepare in further study.

參考文獻


(5) Watson, J. D. Nat. New Biol. 1972, 239, 197.
(7) Goldstein, S. Science 1990, 249, 1129.
(10) Morin, G. B. Cell 1989, 59, 521.
(14) Meyerson, M.; Counter, C. M.; Eaton, E. N.; Ellisen, L. W.; Steiner, P.; Caddle, S. D.; Ziaugra, L.; Beijersbergen, R. L.; Davidoff, M. J.; Liu, Q.; Bacchetti, S.; Haber, D. A.; Weinberg, R. A. Cell 1997, 90, 785.
(16) Gellert, M.; Lipsett, M. N.; Davies, D. R. Proc. Natl. Acad. Sci. USA 1962, 48, 2013.

延伸閱讀