透過您的圖書館登入
IP:3.15.226.5
  • 學位論文

模糊量測理論應用於自走車行走控制

Fuzzy Measure Based Mobile Robot Controller for Autonomous Movement Control

指導教授 : 王偉彥
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要目的在於設計一具有避障功能之自走車,文中所使用模糊量測方法搭配移動式自走車(Pioneer 3-DX)改善超音波感測器不準確的特性,將超音波感測器做為模糊量測系統的輸入,做閃避障礙物判斷的依據,讓自走車在未知空間中進行閃避障礙物與沿牆行走等功能,將自走車的行走路徑紀錄起來,並且使用超音波感測器對自走車移動時所經過的環境做建構。論文中使用 Visual Studio OPEN GL 撰寫模擬程式,在模擬中行走於方形與圓形等未知環境,佐證模糊量測理論使用於自走車上實行閃避障礙物的可行性,並比較未加上模糊量測時自走車的行走狀況,最後以實作的方式,驗證模糊量測理論運用在自走車上的行走效能,在有加上模糊量測理論的路徑會比未加上模糊量測理論時更加穩定。

並列摘要


The major purpose of this thesis is to design an mobile robot that is able to keep away from obstacles. The fuzzy measure methods used in the thesis applied on movable mobile robot (Pioneer 3-DX) improve the features of the inaccuracy of ultrasonic sensor. The ultrasonic sensor will be used as the input of fuzzy measure system. The output will be introduced to fuzzy measure as the determination for the principle of averting obstacles, so that the mobile robot can move in unknown space to dodge obstacles and move along walls. The moving routes of mobile robot can be recorded, and established the map used ultrasonic sensors. In the thesis, a program is written by Visual Studio OPEN GL for simulation. The feasibility that the fuzzy measure theory based on mobile robot to dodge obstacles was verified with various unknown space, and compared the running of mobile robot that is not included with fuzzy measure. Finally, the running results when fuzzy measure theory is applied on mobile robot are analyzed to verify the performance of fuzzy measure theory used on mobile robot. The results show that using the fuzzy measure controller exhibits a better performance movement behavior than that using a controller without fuzzy measure.

參考文獻


[18]T. Y. Chen and T. C. Ku, “Importance-assessing method with fuzzy number-valued fuzzy measures and discussions on TFNs And TrFNs,” International Journal of Fuzzy Systems, vol. 10, no. 2, June 2008.
[22]H. C. Liu, “An improved fuzzy measure based on λ-measure and Its fuzzy integrals,” Journal of Educational Measurement and Statistics, vol. 14, 2006.
[1] G. Antonelli, S. Chiaverini, and G. Fusco, “A fuzzy-logic-based approach for mobile robot path tracking,” IEEE Trans. Fuzzy Syst., vol. 15, no. 2, pp. 211–221, Apr. 2007.
[2] C. L. Hwang, L. J. Chang, and Y. S. Yu, “Network-based fuzzy decentralized sliding-mode control for car-like mobile robots,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 574–585, Feb. 2007.
[3] I. Baturone, F. J. Moreno-Velo, V. Blanco, and J. Ferruz, “Design of embedded DSP-based fuzzy controllers for autonomous mobile robots,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 928–936, Feb. 2008.

被引用紀錄


林育正(2012)。適應性區間第二類模糊滑動控制器應用於自走車路徑追蹤〔碩士論文,國立臺灣師範大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0021-1610201315281048

延伸閱讀