本研究主要目的有三;其一,藉由評量工具的測驗,檢視高一學生對於電解質溶液與元素週期律內容,所具有的迷思概念與知識本體內容及其類別。再者,設計科學史教材提供學生在科學史上的科學家,對於電解質溶液與元素週期律的認知過程,探討科學史教材是否能夠有效地做為學生在進行概念改變時,合適的學習工具。最後,本研究再比較不同的知識本體內容,其概念改變的模式是否有所差異?而由於知識本體內容的差異,是否會影響學生在進行概念改變時的難易程度? 研究進行對象是選定高中一年級學生20名,分為實驗組與控制組各10位。研究步驟為教學前紙筆測驗與晤談、課程教學、教學後紙筆測驗與晤談,以及最末之延宕測驗。 本研究結果如下: 1. 學生在教學前的迷思概念,經評析後發現,在元素週期律方面,多數 學生具有與週期律發展之初的科學家如門德列夫等相近的想法,另有 少數的學生則具有現代週期表的觀念;在電解質溶液方面,同樣有學 生認為溶液中具有離子以外,可供應溶液導電的粒子。而其它相關的 迷思概念,亦有許多與科學史上的錯誤相符。 2. 實驗組學生與控制組學生在概念表現方面的比較上,科學史教學的後 測成績高於傳統教學,兩組的得分上具有顯著差異。而在元素週期律 與電解質溶液的概念表現比較上,兩組學生的得分,均以元素週期律 為高,由此可推論電解質溶液概念較元素週期律的概念要難以改變。 此外,延宕測驗的分數顯示,兩組學生在電解質溶液測驗的退步差分 較多,因此研究者推測,有關於電解質溶液的概念,較難以進行改 變。 3. 分析實驗組與控制組學生的晤談資料發現,學生對於週期律的相關概 念,是歸屬在本體論中的物質屬性;電解質溶液的相關概念,則較多 紛歧。而多數低成就學生的學習成就測驗與進步分數有限,研究者評 析,其原因就在於本體屬性上的錯置。 4. 在比較科學史與傳統課程的差異方面,由於科學史教材能夠提供學生 較多正確的屬性述詞,因此教學成效較為顯著。 綜上所述,科學史教材對於物質屬性與過程屬性方面的概念,皆能有效幫助學生進行概念改變,以達到學習的目的;教師在教學上可以妥善運用科學史教材,以做為成功教學的催化劑。
The purposes of this study are: (a) to explore the 10th grade students’ misconcepts and of the Periodic Law and electrolyte, (b) to investigate if the historical science materials can be an effective instrument to help students change concepts of the Periodic Law and electrolyte, and (c) to compare the cognitive processes of learning those two concepts; if they are different, then to clarify what conceptual change models were revealed. In order to accomplish these purposes, the researcher investigated on twenty 10th grade students, divided into two groups—ten students in experimental group used the history of science materials and the other ten in control group used a traditional instruction. From a paper-and-pencil test, content-specific activity teaching, a post-test, interviewing, and deferring test, the following conclusions are drawn: 1. In Periodic Law, most students keep the same concepts as Mendeleev’s before they are taught ,besides, the others hold the concepts of modern periodic table. In electrolyte, some students think that, besides ions, there are particles that transmit electricity. In addition, many misconcepts correspondent to the history of science occur. 2. In comparison of the students’ conceptual performance, there is a significant difference between the treatment and the control group. The result is that the science historical instruction is better than the traditional one. And in the outcome of students’ performance, both groups of students get higher grades in Periodic Law than in electrolyte. In addition, after deferring test, the result reveals that the students make greater retrogression in the electrolyte test; therefore, it says that it is more difficult to change the concepts of electrolyte than the ones of the Periodic Law. 3. From analyzing two groups of students’ interviewing data, the researcher finds out that the related concepts with the Periodic Law the students hold are attributed to the matter category in ontology, but the concept of electrolyte they hold, it cannot be attributed into an absolute category. As for the result that cause the lower conceptual performance students make limited progression is the misplace of the ontological attribution. 4. In the comparison between the history of science and raditional instruction, the researcher finds out that the history of science provides more correct attributive predicates for students, so it provides a more effective teaching setting activity. In conclusion, both the concepts of matter and process categories in science historical materials are good for students to change their concepts and promote their learning; furthermore, in the process of teaching, teachers should make good use of this kind of materials to be a catalyst of a successful instruction.