透過您的圖書館登入
IP:18.118.144.69
  • 學位論文

碳支撐銅錫奈米觸媒於電化學二氧化碳還原反應效能之研究

The Electrochemical CO2 Reduction Reaction on Carbon-Supported Cu-Sn Nanocatalysts

指導教授 : 王禎翰

摘要


電化學二氧化碳還原反應(CO2RR)為將二氧化碳轉化為有價值的化學燃料和解決全球暖化提供了有效的方法。本研究針對優化銅錫奈米觸媒以獲得最佳的CO2RR效能。以油胺法製備銅錫奈米觸媒並利用能量散射光譜儀(EDS)、感應耦合電漿質譜分析儀(ICP-MS)、X光繞射分析儀(XRD)、X光光電子光譜(XPS)做觸媒特性鑑定。電催化性能藉由電流密度和主要產物一氧化碳法拉第效率來檢驗。透過調整適當銅錫比例來優化銅錫奈米觸媒的化學性質;Cu98Sn2/C在-0.7 V (vs. RHE)下表現出54.0%一氧化碳法拉第效率的最佳活性。觸媒結構的物理性質受合成溫度控制;於493 K下合成出均勻分散在表面的銅和錫,在-0.8 V (vs. RHE)下有最高的一氧化碳法拉第效率88.6%。此外,對兩種錫前驅物做比較發現在油胺法中使用二水氯化亞錫於合成上是更好的選擇。

並列摘要


Electrochemical carbon dioxide reduction reaction (CO2RR) provides an effective way to convert carbon dioxide into valuable chemical fuels and resolve the detrimental problem of global warming. Our present work aims to optimize CuSn nanocatalysts for achieveing the best CO2RR performance. CuSn nanocatalysts were synthesized by oleylamine method and characterized by various technqies, including EDS, ICP-MS, XRD and XPS. The electrocatalytic performance was examined by current density and Faradiac efficiency (FE) of CO, the main reduction product. The chemical character of CuSn nanocatalysts was optimized by adjusting the proper Cu/Sn ratio; Cu98Sn2/C showed the best activity of 54.0% CO FE at -0.7 V (vs.RHE). The physical character of catalyst structure was controlled by the synthetic temperature; evenly dispersed surface Cu and Sn, synthesized at 493 K, had the highest CO FE of 88.6% at -0.8 V (vs. RHE). Addtionally, couple tin precursors were examined and found that dehydrated tin(II) chloride is a better option for the synthesis in oleylamine method.

參考文獻


1. Zheng, Y., et al., Advancing the electrochemistry of the hydrogen‐evolution reaction through combining experiment and theory. Angewandte Chemie International Edition, 2015. 54(1): p. 52-65.
2. Wu, J., et al., CO2 reduction: from the electrochemical to photochemical approach. Advanced Science, 2017. 4(11): p. 1700194.
3. Kortlever, R., et al., Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. The journal of physical chemistry letters, 2015. 6(20): p. 4073-4082.
4. Zhou, J.-H. and Y.-W. Zhang, Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective. Reaction Chemistry & Engineering, 2018. 3(5): p. 591-625.
5. Greeley, J., et al., Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature materials, 2006. 5(11): p. 909-913.

延伸閱讀