透過您的圖書館登入
IP:216.73.216.73
  • 學位論文

3D列印容槽鑲嵌毛筆尖電噴灑/質譜法的開發與研究

Development and application of a 3D-printed kit for loading a spray-brush in electrospray ionization/mass spectrometry

指導教授 : 林震煌
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究基於電噴灑質譜法,首度開發一個新型的採樣/電噴灑裝置。類似於紙片電噴灑質譜法的原理,分析物揮發後經過尼龍毛筆尖而離子化。將尼龍毛筆尖鑲嵌在3D列印容槽中,容槽內的甲醇可以持續提供溶劑使毛筆可以像毛細管一樣穩定的進行電噴灑。本實驗也選用不同材質的毛進行比較,探討不同材質對電噴灑效果的影響,而實驗結果顯示尼龍毛具有最好的離子化效率,故最後選用尼龍毛做為本研究裝置的毛筆材質。這是因為尼龍毛的表面較為平滑,樣品可以順著毛快速的噴灑並且離子化。本裝置中的3D列印容槽是利用市售的3D列印機印製而成,而印製材料選用ABS樹脂,為丙烯腈-丁二烯-苯乙烯的共聚物。其總重量約為1克,總長約為3.5公分。本裝置為可拋棄式並且可提供多種功能,包含非侵入性的採樣、簡單的萃取以及離子化樣品。以農藥大滅松(C5H12NO3PS2)為測試樣品,其最低偵測極限為0.1 µg/mL。同質譜條件下,相較於傳統濾紙電噴灑可得到更低的偵測極限。模擬真實樣品採樣可測至1 µg/ml,可快速且準確的偵測樣品以達快篩的目的。

並列摘要


A novel type of a sampling/ionization kit was successfully developed for use in electrospray ionization/mass spectrometry, for the first time. Based on the similar theory with paper-spray mass spectrometry, the analytes were evaporated and then ionized through the surface of a small nylon writing-brush. A part of the nylon writing-brush was embedded inside a 3D-printed plastic cell, in which methanol was provided for rinsing the brush by means of capillary action. Although various brushes were examined, we finally selected nylon fiber in this study. This is because the surface nylon fiber is smooth, and then the sample molecules can be transferred and sprayed faster. The body of the kit was produced by a commercial 3D-printer, in which ABS (acrylonitrile butadiene styrene) was used for the making material. The size and weight of the kit were 1 gram and 4 cm, respectively. This disposable kit provides various functions, including non-invasive sampling, simple-extraction and ionization. On the other hand, various types of pesticides were selected as the test samples. To a dimethoate (C5H12NO3PS2), the limit of detection was found to 0.1 µg/mL. By using the same mass spectrometer, the results were better than that of a traditional paper-spray mass spectrometry, using a triangular chromatography paper.

參考文獻


參考文獻
[1]. G. IJ. Salentijn, H. P. Permentier, E. Verpoorte, Anal. Chem. 86 (2014) 11657-11665.
[2]. A. O. Nier, Rev. Sci. Instrum. 18 (1947) 415.
[3]. M. S. B. Munson, J. Am. Chem. Soc. 88 (1966) 2621
[4]. M. Karas, F. Hillenkamp,

延伸閱讀