透過您的圖書館登入
IP:3.15.190.144
  • 學位論文

含主族元素 (鉍、硫、硒、碲) 之過渡金屬 (鐵、釕、鉻、錳) 團簇化合物的合成、化性、物性與理論計算探討

Group 15/16 (Bi, S, Se, Te)-Containing Transition Metal (Fe, Ru, Cr, Mn) Carbonyl Clusters: Synthesis, Reactivities, Physical Properties, and Computational Studies

指導教授 : 謝明惠
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


1. E/Bi/Fe/CO (E = S, Se, Te) 系統之研究 將 [EFe3(CO)9]2− (E = S, Se, Te) 與一當量 BiCl3 在 THF 溶液中於 0 oC 下反應,可分別得到新穎混合十六族與鉍之金字塔構型團簇物 [EBiFe3(CO)9]− (E = S, 1a; Se, 1b; Te, 1c)。X-ray 分析顯示 1a─1c 皆由一 Fe(CO)3 片段蓋接於 EBiFe2 平面上形成金字塔構型,其中 E 與 Bi 位於 EBiFe2 矩形之對角。進一步將 1a 與 MeOTf 反應可於 S 原子上甲基化生成 [(SMe)BiFe3(CO)9] (2a);若將 1b 與 1c 與 Cr(CO)5THF 反應,則會得 Cr(CO)5 片段引入之 [EBiFe3(CO)9Cr(CO)5]− (E = Se, 3b; Te, 3c),其中 Cr(CO)5 片段鍵結於 Se(Te) 或 Bi 頂點上。再者,將 1b 和 1c 分別加入 K2SeO3 或 NaBiO3 在 MeCN/MeOH 混合溶液中加熱,可脫去一 Fe(CO)3 頂點,形成四角錐構型之 [EBiFe2(CO)6]− (E = Se, 4b; Te, 4c),當中 E 和 Bi 原子具有鍵結。此外,將 1b 和 1c 與 4/3 當量之 Ru3(CO)12 加熱反應,則進行金屬取代反應生成八面體之 [EBiRu4(CO)11]− (E = Se, 5b; Te, 5c),而 E 和 Bi 原子分別蓋接於 Ru4 環的上下側。此外,本研究亦藉由電化學、固態電子吸收光譜、XAS 與 XPS 光譜探討此系列混合十六族與鉍之鐵金屬團簇物的性質並輔以理論計算驗證。 2. E/Cr/Mn/M/CO (E = S, Se; M = Cd, Hg) 系統之研究 將雙三角錐 [E2CrMn2(CO)9]2− (E = S, Se) 與半當量 Cd(ClO4)2 在 0 oC 下反應可分別得到 Cd 橋接之混合 Cr─Mn 團簇物 [{E2CrMn2(CO)9}2Cd]2− (E = S, 1a; Se, 1b),且具有良好產率。若將 [E2CrMn2(CO)9]2− (E = S, Se) 改與半當量 Hg(OAc)2 反應則生成 [{E2CrMn2(CO)9}2Hg]2− (E = S, 2a; Se, 2b)。X-ray 分析顯示 1a─2b 皆為由 Cd 或 Hg 金屬橋接雙 E2CrMn2 團簇之構型,其中 Cd 和 Hg 金屬皆以 μ4-M 型式橋接兩個 E2CrMn2 核中的一個金屬─金屬鍵。綜合紅外線光譜與密度泛函理論計算結果顯示在錯合物 1a 與 1b 中,Cd 原子橋接於兩個 Cr─Mn 鍵間並呈現順式結構;而於錯合物 2a 與 2b 中,Hg 原子則是架橋在一個 Cr─Mn 鍵與一個 Mn─Mn 鍵間。此外,根據質譜與紅外線光譜分析推測當 [E2CrMn2(CO)9]2− (E = S, Se) 與一當量 HgCl2 在 MeCN 溶劑中於 0 oC 下反應會生成 HgCl 片段引入之 [E2CrMn2(CO)9HgCl]− (E = S, 3a'; Se, 3b');然而相同反應將條件改成在 −30 oC 中以 CH2Cl2 為溶劑進行,則可得到其另一結構異構物 3a" 以及 3b"。進一步由理論計算推斷錯合物 3a'(3b') 中的 HgCl 片段橋接於 Mn─Mn 邊上;而在 3a"(3b") 中的 HgCl 片段則是橋接於 Cr─Mn 邊上。再者,本研究亦藉由電化學、液態與固態電子吸收光譜探討此系列含十六族之混合十二族與鉻、錳金屬團簇物的性質並輔以理論計算驗證。 3. Te/Mn/Ru/CO 系統之研究 利用 K2TeO3、Mn2(CO)10 與 Ru3(CO)12 以莫耳比 1.6: 1: 0.67 於甲醇溶液加熱迴流,可得混合錳與釕金屬之八面體團簇物 [Te2Mn2Ru2(CO)11]2− (1),其中碲原子分別蓋接於順式 Mn2Ru2 平面之上下側。將錯合物 1 與一當量 CuX (X = Cl, Br, I) 於 THF 中反應可得 CuX 片段橋接於 Mn─Ru 鍵之錯合物 [Te2Mn2Ru2(CO)11CuX]2− (X = Cl, 2a; Br, 2b; I, 2c);若改與一當量 [Cu(MeCN)4]BF4 反應,則形成中間物 [Te2Mn2Ru2(CO)11Cu(MeCN)]− (3)。中間物 3 可進一步與 4,4'-bipyridine (bpy) 配子反應,得到二聚的 [{Te2Mn2Ru2(CO)11Cu}2(bpy)]2− (4)。另一方面,當 1 與一當量 CdBr2 反應可形成 CdBr2 片段鍵結於 Ru─Ru 鍵之錯合物 [Te2Mn2Ru2(CO)11CdBr2]2− (5b);然而若改與一當量 HgCl2 反應,則形成以 μ4-Hg 橋接雙 Te2Mn2Ru2(CO)11 的團簇物 [{Te2Mn2Ru2(CO)11}2Hg]2− (6)。有趣的是,當團簇物 1 與二或三當量的 HgX2 (X = Cl, Br, I) 反應,則會分別生成 HgCl 片段橋接於 Ru─Ru 鍵的 [Te2Mn2Ru2(CO)11HgCl]− (7) 與以 Hg2X2 橋接雙 Te2Mn2Ru2 核之 [{Te2Mn2Ru2(CO)11}2Hg2X2]2− (X = Br, 8b; I, 8c)。此外,本研究亦藉由電化學以及固態電子吸收光譜探討一系列十六族混合錳與釕金屬之團簇物的性質,並輔以理論計算佐證。

並列摘要


1. E/Bi/Fe/CO (E = S, Se, Te) System When [EFe3(CO)9]2− (E = S, Se, Te) were reacted with 1 equiv of BiCl3 in THF solutions at 0 oC, mixed chalcogen and bismuth square-pyramidal [EBiFe3(CO)9]− (E = S, 1a; Se, 1b; Te, 1c) were formed, respectively, in moderate yields. X-ray analysis showed that 1a─1c each exhibited a trans-EBiFe2 square plane, which was capped by an apical Fe(CO)3 fragment to form a square-pyramidal geometry. In addition, the reaction of 1a with MeOTf led to the formation of the S-methylated product, [(SMe)BiFe3(CO)9] (2a). When 1b and 1c were treated with Cr(CO)5THF, mono-Cr(CO)5-incorporated [EBiFe3(CO)9Cr(CO)5]− (E = Se, 3b; Te, 3c) were obtained, in which the incoming Cr(CO)5 moiety was attached to the chalcogen or bismuth atom. Furthermore, upon the treatment of K2SeO3 or NaBiO3 in mixed MeCN/MeOH solutions at 65 oC, one Fe(CO)3 vertex of 1b and 1c was eliminated to give tetrahedral [EBiFe2(CO)6]− (E = Se, 4b; Te, 4c), which consisted of an EBiFe2 (E = Se, Te) core with the E and Bi atoms covalently bonded. On the other hand, when 1b and 1c were heated with 4/3 equiv of Ru3(CO)12, octahedral [EBiRu4(CO)11]− (E = Se, 5b; Te, 5c) were formed, respectively. Furthermore, the nature, formation, and the oxidation state of Bi atom as well as the electrochemical and optical properties of these mixed E─Bi metal carbonyl clusters were elucidated with the aid of DFT calculations. 2. E/Cr/Mn/M/CO (E = S, Se; M = Cd, Hg) System When trigonal-bipyramidal clusters, [E2CrMn2(CO)9]2− (E = S, Se), were treated with 0.5 euqiv of Cd(ClO4)2 in MeCN at 0 oC, the Cd-bridged mixed Cr─Mn clusters [{E2CrMn2(CO)9}2Cd]2− (E = S, 1a; Se, 1b) were produced in good yields, respectively. Analogous reactions of [E2CrMn2(CO)9]2− (E = S, Se) with Hg(OAc)2 led to the formation of [{E2CrMn2(CO)9}2Hg]2− (E = S, 2a; Se, 2b), respectively. X-ray analysis showed that the geometries of 1a─2b can be described as Cd- or Hg-bridged di-E2CrMn2-based (E = S, Se) clusters, in which one of the metal─metal bonds of each E2CrMn2 core was bridged by a μ4-Cd or μ4-Hg ion. Combined infrared spectra and DFT studies indicated that the Cd ion was bridging two E2CrMn2 cores across two Cr─Mn bonds in cis conformation in 1a and 1b. For complexes 2a and 2b, the Hg ion was bridging two clusters across one Cr─Mn and one Mn─Mn edges. Besides, the reactions of [E2CrMn2(CO)9]2− (E = S, Se) with 1 equiv of HgCl2 in MeCN at 0 oC produced the HgCl-incorporated complexes [E2CrMn2(CO)9HgCl]− (E = S, 3a'; Se, 3b'), while the similar reactions in CH2Cl2 at −30 oC gave their structural isomers, 3a" and 3b", suggested by the ESI-MS and IR spectra. On the basis of DFT calculations, it was proposed that the HgCl fragment was bonded to the Mn─Mn edge in 3a'(3b') but to the Cr─Mn edge in 3a"(3b"). Furthermore, the nature, formation, electrochemistry, and optical properties of these group 12-incorporated mixed Cr─Mn chalcogenide clusters were elucidated with the aid of DFT calculations. 3. Te/Mn/Ru/CO System The one-pot reaction of K2TeO3, Mn2(CO)10, and Ru3(CO)12 in a molar ratio of 1.6: 1: 0.67 in MeOH solutions at 85 oC produced a new mixed Mn─Ru telluride cluster [Te2Mn2Ru2(CO)11]2− (1). X-ray analysis showed that 1 consisted of an octahedral Te2Mn2Ru2 core with the cis-Mn2Ru2 plane bicapped above and below by two Te atoms. When complex 1 was treated with 1 equiv of CuX (X = Cl, Br, I) in THF, mono-CuX-incorporated [Te2Mn2Ru2(CO)11CuX]2− (X = Cl, 2a; Br, 2b; I, 2c) were yielded, respectively, in which the CuX fragment was bonded to the Mn─Ru bond. In addition, the reaction of 1 with 1 equiv of [Cu(MeCN)4]BF4 readily produced an intermediate [Te2Mn2Ru2(CO)11Cu(MeCN)]− (3), which could further tranform to di-Te2Mn2Ru2-based [{Te2Mn2Ru2(CO)11Cu}2(bpy)]2− (4) upon the treatment of 4,4'-bipyridine (bpy) ligand. On the other hand, the reaction of 1 with 1 equiv of CdBr2 yielded the CdBr2-incorporated [Te2Mn2Ru2(CO)11CdBr2]2− (5b), where the Ru─Ru edge was bridged by the incoming CdBr2 moiety. In contrast, the treatment of 1 with 1 equiv of HgCl2 produced Hg-bridged [{Te2Mn2Ru2(CO)11}2Hg]2− (6), which was composed of two Te2Mn2Ru2 cores linked by a μ4-Hg atom across two Ru─Ru bonds. Moreover, it was found that cluster 1 could react with 2 or 3 equiv of HgX2 (X = Cl, Br, I) to give [Te2Mn2Ru2(CO)11HgCl]− (7) and [{Te2Mn2Ru2(CO)11}2Hg2X2]2− (X = Br, 8b; I, 8c), respectively. Cluster 7 displayed a Te2Mn2Ru2 core with a HgCl fragment bridging the Ru─Ru bond, while 8b and 8c each exhibited a di-Te2Mn2Ru2 core connected by a Hg2X2 (X = Br, 8b; I, 8c) unit. Furthermore, the formation, electrochemical, and optical properties of these E─Mn─Ru carbonyl clusters were elucidated by DFT calculations.

並列關鍵字

Bismuth Chalcogen Transition Metals Metal Cluster Carbonyl

參考文獻


Chapter 1
(1) (a) Krebs, B.; Hucke., M.; Brendel, C. Angew. Chem., Int. Ed. Engl. 1982, 21, 445─446. (b) Ulvenlund, S.; Stahl, K.; Bengtsson-Kloo, L. Inorg. Chem. 1996, 35, 223─230. (c) Ruck, M. Angew. Chem., Int. Ed. 2001, 40, 1182─1193. (d) Xu, L.; Bobev, S.; El-Bahraoui, J.; Sevov, S. C. J. Am. Chem. Soc. 2000, 122, 1838─1839. (e) Goicoechea, J. M.; Sevov, S. C. Angew. Chem., Int. Ed. 2006, 45, 5147─5150. (f) Sun, H.-T.; Zhou, J.; Qiu, J. Prog. Mater. Sci. 2014, 64, 1─72.
(2) (a) The Chemistry of Metal Cluster Complexes; Shriver, D. F., Kaesz, H. D., Adams, R. D., Eds.; Wiley-VCH Publishers: New York, 1990. (b) Compton, N. A.; Errington, R. J.; Norman, N. C. Adv. Organomet. Chem. 1990, 31, 130─154. (c) Whitmire, K. H. J. Cluster Sci. 1991, 2, 231─258. (d) Whitmire, K. H. Adv. Organomet. Chem. 1998, 42, 1─145.
(3) For reviews see: (a) Sasamori, T.; Tokitoh, N. Dalton Trans. 2008, 1395─1408. (b) Balázs, L.; Breunig, H. J. Coord. Chem. Rev. 2004, 248, 603─621. (c) Power, P. P. Chem. Rev. 1999, 99, 3463─3503.
(4) (a) Tokitoh, N.; Arai, Y.; Okazaki, R.; Nagase, S. Science 1997, 277, 78─80. (b) Sasamori, T.; Mieda, E.; Nagahora, N.; Sato, K.; Shiomi, D.; Takui, T.; Hosoi, Y.; Furukawa, Y.; Takagi, N.; Nagase, S.; Tokitoh, N. J. Am. Chem. Soc. 2006, 128, 12582─12588. (c) Twamley, B.; Sofield, C. D.; Olmstead, M. M.; Power, P. P. J. Am. Chem. Soc. 1999, 121, 3357─3367. (d) Šimon, P.; De Proft, F.; Jambor, R.; Růžička, A.; Dostál, L. Angew. Chem., Int. Ed. 2010, 49, 5468─5471.

延伸閱讀