透過您的圖書館登入
IP:18.119.167.248
  • 學位論文

觀察走與跑不對稱性的現象以及疲勞對步態不對稱之影響

Determination of gait asymmetry and the effect of fatigue on gait asymmetry in walking and running.

指導教授 : 相子元
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


不對稱的步態在長時間的累積下不但會影響運動表現,甚至進一步造成慢性傷害,然而針對健康的一般人而言,步態不對稱的現象在長時間走跑的累積下其變化的情形,目前還未有一明確的指標來觀察。目的:實驗一:找出適當的運動學參數以及感測器擺放之部位來評估步態的不對稱現象;實驗二:釐清疲勞對步態不對稱之影響。方法:本研究分為兩個部份,實驗一:透過不對稱狀態的操弄 (單側加重、加長),利用實驗室現有的儀器來觀察人體在不同步態及不對稱狀態下的不對稱現象,並驗證慣性感測器在人體步態不對稱現象應用的可能性。實驗二:透過疲勞的介入,來觀察不對稱現象的變化。結果:實驗一:以感測器安裝部位而言,下肢與軀幹較能觀察出不對稱操弄的影響,以參數而言矢狀面上的加速度與角速度較佳,以分期而言為支撐期較能觀察到不對稱操弄的影響;實驗二:隨著動作時間的增加步態不對稱性會有下降的趨勢,下肢相對其它部位較能觀察出不對稱指標的變化。結論:慣性感測器可以用來量測步態的不對稱性,下肢是較適合的位置、支撐期矢狀面上的加速度與角速度是較適合的運動學參數;步態會隨著疲勞的累積而越對稱。

並列摘要


A prolonged asymmetric gait could not only affect the sports performance but also cause the chronic injury. For healthy people, there is no clear and definite index to observe the gait asymmetry during prolonged walking or running. The purposes of this study were to determine which kinematics indexes and where were the suitable sensor placement for observing gait asymmetry (study I), and to determine the effect of fatigue on gait asymmetry in walking and running (study II). Method: Motion capture system and inertial measurement unit sensors (IMU) were used to observe the artificial asymmetric gait through the unilateral weighted and lengthen. To determine the practicality of applying IMU sensor in gait asymmetry observation. And to observe the change of gait asymmetry during a prolonged walking and running. The results showed that the lower extremity and trunk were the suitable placement, and the acceleration and angular velocity on the sagittal plane in stance phase can better determine gait asymmetry. The asymmetry index will get smaller with the fatigue increasing. Conclusion: The IMU sensor can be used to determine gait asymmetry. The kinematics indexes of lower extremity on the sagittal plane in stance phase are the most suitable combination to determine gait asymmetry. The gait may become more symmetrical with fatigue.

參考文獻


Chan, M., Estève, D., Fourniols, J.-Y., Escriba, C., & Campo, E. (2012). Smart wearable systems: Current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137-156. doi:http://dx.doi.org/10.1016/j.artmed.2012.09.003
Andres, R. O., & Stimmel, S. K. (1990). Prosthetic alignment effects on gait symmetry: a case study. Clinical Biomechanics, 5(2), 88-96. doi:http://dx.doi.org/10.1016/0268-0033(90)90043-6
Ashton, G. C. (1982). Handedness: An alternative hypothesis. Behavior Genetics, 12(2), 125-147. doi:http://10.1007/bf01065761
Bellanca, J. L., Lowry, K. A., VanSwearingen, J. M., Brach, J. S., & Redfern, M. S. (2013). Harmonic ratios: A quantification of step to step symmetry. Journal of Biomechanics, 46(4), 828-831. doi:http://dx.doi.org/10.1016/j.jbiomech.2012.12.008
Błażkiewicz, M., Wiszomirska, I., & Wit, A. (2014). Comparison of four methods of calculating the symmetry of spatial-temporal parameters of gait. Acta of Bioengineering and Biomechanics, 16(1), 29-35.

延伸閱讀