透過您的圖書館登入
IP:18.216.83.240
  • 學位論文

以奈米碳管改變有機混合材料之金屬接點特性研究與可靠度分析

Improving the contact properties of organic hybrid materials by adding the carbon nanotubes

指導教授 : 魏拯華

摘要


本論文主要研究以奈米碳管有機層與多種金屬之接面特性分析。有機層的材料為奈米碳管(Carbon Nanotube)和3-己烷噻吩(poly(3-hexylthiophene))(RR-P3HT)兩種材料之混合,作為上下金屬電極傳輸的媒介。元件結構同樣以金為下電極。然後使用了甲苯(toluene)當溶劑,利用旋轉塗佈法製作P3HT:CNTs薄膜為有機層。接著使用熱蒸鍍的方式分別鍍上六種不同金屬:Al、Au、Ti、Cr、Pd、Ag當作上電極,量測其元件特性做不同的比較。結果發現Ti的特性表現結果最佳,不管是在小電壓(-1V~+1V)或是大電壓(-5V~+5V),量測值之總電阻均小於0.1MΩ,電流值也大於10-6A,有效顆數百分比也是最高,可得知Ti元件與有機層(P3HT: CNTs)的接觸特性效果最好,屬於歐姆接觸(Ohmic Contact)特性。其次Cr的有效顆數百分比也很高,並且在大電壓(-5V~+5V)量測時清楚的表現出蕭特基接觸(Schottky Contact)特性。最後,本論文也進行存放環境對元件電流傳輸性質的影響研究。當元件置於氮氣環境、高濕度以及低濕度下保存時,元件之導電特性會出現明顯、可自我回復之特性變化。

並列摘要


In this paper, we study the contact properties between the organic layer and various metals which are modified by adding carbon nanotubes (CNTs). The organic layer is the mixture of CNTs and poly (3-hexylthiophene) (P3HT). The vertical metal-organic semiconduction-metal (MSM) structure is used in this paper. The bottom electrode is Au and the top electrode is Al、Au、Ti、Cr、Pd and Ag respectively. After different testing configuration, we found that the device with Ti electrode show the lowest total resistance (<0.1 MΩ), lowest threshold voltage (Vth≒0.1V) and highest yield. It means that the Ti is the best ohmic metal for the mixture of P3HT-CNTs.Besides, the effects of the environment are studied, the conduction properties of the devices are evidently affected by the humidity of the storage box. When the device was placed in a nitrogen atmosphere, high humidity and low humidity saved, the component of the electrical properties will be significant, change in self-recovery characteristics.

並列關鍵字

P3HT CNT Contact resistance

參考文獻


[1]. S. Iijima, “Helical microtubes of graphitic carbon”, Nature, Vol. 354, pp. 56-58, 1991.
[2]. S. Iijima, T. Ichihashi, “Single-shell carbon nanotubes of 1nm diameter”, Nature, Vol.363, pp. 603-605, 1993.
[3]. M. R. Falvo, G. J. Clary, et al., “Bending and bucking of carbon nanotubes under large strain”, Nature, Vol. 389, pp. 582-584, 1997.
[4]. E. W. Wong, P. E. Sheehan, and C. M. Lieber, “Nanobeam mechanics: elasticity, strength and toughness of nanorods and nanotubes”, Science, Vol. 227, pp. 1971-1975, 1997.
[5]. J. Hone, M. Whitney, C. Piscoti, and A. Zettl, “Thermal conductivity of single-walled carbon nanotubes”, Phys. Rev. B, Vol. 59, pp. R2514-R2516, 1999.

延伸閱讀