透過您的圖書館登入
IP:18.119.133.96
  • 學位論文

高電源拒低壓線性穩壓器之無線電源積體電路

Near-Field Wireless Power Integrated Circuit with High PSR Low Dropout Regulator

指導教授 : 黃弘一
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


現今無線傳能技術廣泛的應用於生醫電子及RFID等積體電路應用。一個高電源拒斥調節器為生醫電路與系統所需。高電源拒斥調節可抑制電源雜訊的變化與不同頻率的振幅,不僅降低漣波且提供更穩定的輸出。此外,隨著製程的進步,低功率應用及高效能的積體電路不僅要提供一個穩定電源,在提高效率的部分也將成為設計挑戰。本研究提出一無外部電容之近場無線電源積體電路,除了傳能耦合線圈外,無其它外接原件,利用疊接式低壓線性穩壓器來提高電源拒斥能力來降低輸出漣波,並提升可靠度。測試晶片以台積電0.18μm 1P6M標準製程實現,晶片面積為0.751x0.968 mm2.。量測結果,接收端皆能產生穩定之1.8V直流輸出電壓,以供給1mA負載電流,輸出漣波8.8mV Vpp。

並列摘要


Near-field wireless power transmission is widely used in RFID and biomedical applications. A high PSR regulator is a requirement for biomedical circuits and systems. High PSR regulator can suppress the power supply noise which can have large variations of amplitude and of different frequencies to be able to provide a more stable output and reduced ripple. Moreover, with the advancement of process technologies for low power applications, a reliable and efficient power integrated circuit not only to provide a stable supply but also to maximize efficiency becomes a design challenge. This work presents a near-field wireless power integrated circuit without external capacitors where the only external component is the coupling coil. The output ripple is minimized by utilizing a high PSR low dropout regulator using a cascode structure. The measurement results show that the receiver can generate a stable 1.8V DC output voltage to supply 1mA output current. The output voltage ripple is 8.8mV Vpp. The test chip is implemented by TSMC 0.18μm 1P6M process and the chip area is 0.751 0.968 mm2.

參考文獻


[1] P. Cong, N. Chaimanonart, W. H. Ko and D. J. Young, “Wireless and batteryless 10-bit implantable blood pressure sensing microsystem with adaptive RF powering for real-time laboratory mice monitoring,” IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 3631-3644, Dec. 2009.
[2] M. R. Haider, S. K. Islam, S. Mostafa, M. Zhang and T. Oh, “Low-power low-voltage current readout circuit for inductively powered implant system,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 4, pp. 205-213, Aug. 2010.
[3] H. M. Lu, C. Goldsmith, L. Cauller and J.-B. Lee, “MEMS-based inductively coupled RFID transponder for implantable wireless sensor applications,” IEEE Trans. Magn., vol. 43, no. 6, pp. 2412-2414, Jun. 2007.
[4] B. Chen, Y. Zhu, K. Zhu, T. Mo and Z. Que, "The design of a wireless power transmission mechanism for locomotion in active medical inspection MEMS," in IEEE Int. Symp. Embedded Computing, 2008, pp. 382-387.
[5] X. Liu, F. Zhang, S. Hackworth, R. J. Sclabassi, and M. Sun, “Wireless power transfer system design for implanted and worn devices,” in Proc. IEEE Annu. Northeast Bioengineering Conf., 2009, pp. 1-2.

延伸閱讀