透過您的圖書館登入
IP:216.73.216.225
  • 學位論文

整合社群網絡之多準則餐廳推薦系統

Integrating Multi-criteria Restaurant Recommendation Systems on Social Networks

指導教授 : 溫演福
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


近年來,隨著資訊交流的發達,人們可獲得越來越多的美食資訊,使得消費者越來越重視食物的品質、價位、以及餐廳服務態度和口碑;由於社群網絡的興起,消費者已習慣透過網路資訊和好友推薦以選擇更適合自己消費習慣的餐廳,社群所能擁有的資訊開始漸漸多過於一些傳統的美食網站,但社群介面的訊息更替快速,使用者在搜尋舊有資料上有些難度。本研究的目的是希望建立一個以使用者為主(個人化)的餐廳推薦系統,結合使用者本身的餐廳偏好以及使用者周遭好友的經驗分享(由社群得知),幫助使用者過濾掉不感興趣或沒有習慣去的餐廳,以達到隨時隨地的有效推薦,並將推薦結果顯示在地圖上,經過一系列的驗證過程,我們比較了有社群經驗及沒有社群經驗的推薦結果,以及經驗多寡的影響;評估結果發現有社群經驗的推薦結果成功率及準確度較高,而經驗的多寡會使推薦的成功率及準確度上升。

並列摘要


In recent years, with the exchange of information developed, people can get more food information.Consumers pay more attention on the food quality, price, restaurant service attitude and reputation.Consumers have been habit to observe related information through Internet and recommended to choose the satisfying restaurant for their own consumption habits. Through the rising of social networks, the amount of the related information possessed by a social network is much higher than the traditionaldelicacies web sites, but the information of the social network update much faster than traditional ones that is difficult to search the required message.The purpose of this study is to build-up a user-based (or personal) restaurant recommendation system, which combined the user restaurant preferences and share experiences around their friends (i.e., to learn from the social networks). The system helps filter out noninterest or non-habitual restaurant to achieve an effective recommendation anywhere. The results are displayed on the map.After a series of validation process, we have compared the recommendation result by using experience of community and no experience of community, and the impact of the amount of experiences; we found that community experience has a higher success rate and accuracy, and the level of experience increases the success rate and accuracy.

參考文獻


[17] 郭羿呈(2012)。使用社交圖與情境感知之行動餐廳推薦系統。國立台灣大學,台北市。
[6] T. H. Tan, C. S.Chang,andY. F. Chen.(2011).Developing an Intelligent e-Restaurant With a Menu Recommender for Customer-Centric Service. Systems, Man, and Cybernetics, Part C: Applications and Reviews,IEEE Transactions on. Vol.41, No.6, pp. 1-13.
[7] 廖婉菁(2002)。應用協同過濾機制於商品推薦之研究-以手機網站為例。中原大學資訊管理學系,桃園縣。
[9] D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. (1992). Using Collaborative Filtering to Weave an Information TAPESTRY. Communications of the ACM, Vol.35, No. 12, pp.61-70.
[10] G.Linden, B. Smith, and J.York.(2003).Amazon.com Recommendations: Item-to-Item Collaborative Filtering.IEEE Internet Computing, Jan/Feb, pp.76-80.

延伸閱讀