透過您的圖書館登入
IP:18.221.222.47
  • 學位論文

陽光電城太陽能利用之生命週期評估

Life Cycle Assessment of Solar Energy from the Implementation of Solar Cities.

指導教授 : 李育明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


有鑒於能源危機,各國皆積極進行再生能源之開發與研究,當中又以太陽能最受矚目。太陽能為潔淨之再生能源,可以取之不盡且用之不竭,同時在發電過程中不會造成環境污染。台灣在能源需求上相當倚賴國外進口,隨著全球能源逐漸耗竭,台灣勢必會面臨到能源短缺的問題,因此發展潔淨並具再生特性之永續能源已成政府現階段之主要課題。因太陽能正具備上述能源特性,故本研究將以國內陽光電城為研究對象,利用生命週期評估探討陽光電城之材料耗用、能源投入、相關排放與能源償付期等。 經由生命週期盤查結果可得知國內陽光電城每度電之材料消耗:矽1.57~3.11g、玻璃8.92~17.65g、EVA0.97~1.93g、塑膠0.01~0.03g、銅0.01~0.03g、型鋼18.13~35.86g、鋼筋3.04~6.02g、鋁1.20~2.39g。在能源投入部分,陽光電城每度電之能源投入為0.54~1.08MJ,而在CO2排放量方面,陽光電城每度電之CO2排放量為33.4~65.1g,其值遠低於國內的傳統發電(623g/kWh)。至於在能源償付期方面,陽光電城約為3.01~5.98年。 本研究另外將陽光電城內部之太陽光能發電系統獨立出來探討,同樣經由生命週期盤查結果可得知陽光電城之光電系統每度電能源投入為0.24~0.49MJ,而在CO2排放量方面,陽光電城之光電系統每度電CO2排放量為9.4~16.9g。至於在能源償付期方面,陽光電城之光電系統約為1.35~2.69年。最後本研究再將陽光電城與光電系統跟一般傳統發電方式相比,可得知陽光電城每度電之CO2排放量約可減少557.9~589.6g,而陽光電城之光電系統每度電CO2排放量則約可減少604.6~613.6g之多。

並列摘要


In view of the energy crisis, most states are positive to proceed with the development of renewable energy and research. Solar energy is one of the most attention renewable energy. Solar energy is clean and renewable, it can be inexhaustible and unlimited. Also the power generation process will not cause environmental pollution. The energy resources of Taiwan is major dependent on importation, with the gradual depletion of global energy, Taiwan will certainly face the problem of energy shortage. Therefore, developing sustainable energy with clean and regenerative properties has become the main concern for the government at the present stage. Since the solar energy has the energy characteristics mentioned above, therefore, the purpose of this study will focus on the implementation of solar cities in Taiwan, using the life cycle assessment to seek for the material consumption, energy consumption, CO2 emission and energy pay back time. Through the life cycle inventory results, the solar cities of material consumption per kWh is Silicon of 1.57~3.11g, Glass of 8.92~17.65g, EVA of 0.97~1.93g, Plastic of 0.01~0.03g, Copper of 0.01~0.03g, Structural Steel of 18.13~35.86g, Reinforced Iron of 3.04~6.02g, Aluminum of 1.20~2.39g. The energy consumption of the solar cities is about 0.54~1.08MJ/kWh, and the CO2 emission comes to approximately 33.4~65.1g/kWh. The values above are much lower than the domestic’s traditional generation (623g/kWh). Concerning the energy pay back time of solar cities is about 3.01~5.98 year. More over, this research also confer the photovoltaic system of solar cities independently. Through the life cycle inventory, shows that the energy consumption of the photovoltaic system of solar cities comes to about 0.24~0.49MJ/kWh, and CO2 emission is about 9.4~16.9g/kWh. As for the energy pay back time of the photovoltaic system of solar cities is approximately 1.35~2.69 year. At last, this research will compare the solar cities and their photovoltaic system with the traditional generation. The result display the CO2 emissions of solar cities can reduce about 557.9~589.6g/kWh more. On the other hand, the CO2 emissions of the photovoltaic system of solar cities can reduce approximately 604.6~613.6g/kWh more.

參考文獻


3.林友復,2008,「以廢晶圓回收之矽材料替代原生矽料之太陽能晶片的經濟與環境效率評估」,國立台北大學自然資源與環境管理研究所碩士論文。
11.張又升,2002,「建築物生命週期二氧化碳減量評估」,國立成功大學建築研究所博士論文。
1.Azzopardi, B. and J. Mutale, 2010, “Life cycle analysis for future photovoltaic systems using hybrid solar cells”, Renewable and Sustainable Energy Reviews, 14:1130–1134.
2.British Petroleum (BP), 2010, Statistical Review of World Energy 2010. Available from http://www.bp.com/ statisticalreview.
3.Battisti, R. and A. Corrado, 2005, “Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology”, Energy, 30:952-967.

被引用紀錄


黎潤林(2011)。小水力發電之生命週期評估〔碩士論文,國立臺北大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0023-2908201122160800

延伸閱讀