透過您的圖書館登入
IP:3.147.56.45
  • 學位論文

蓄熱式觸媒轉化器於機車引擎冷車起動的轉化特性研究

The catalyst with heat storing material on the emissions of motorcycle engine under cold-start conditions

指導教授 : 洪榮芳

摘要


本文係針對電熱式觸媒轉化器進行研究,並於觸媒轉化器前段與中段裝置蓄熱材料,將儲蓄於蓄熱材料中的熱量釋放出來,藉由蓄熱材料的長短來調整升溫速率及蓄熱量,以改善引擎冷起動之污染排放。 實驗參數主要為蓄熱材料長度、加熱溫度、CO設定濃度及加熱位置等。設定加熱溫度範圍包括100℃、140℃、180℃及220℃等;CO設定值則採1.3%及1.8%;加熱位置包括兩支加熱器均於觸媒入口處(A+B),一支在入口處另一支在中段(B+C)及兩支均在觸媒中段者(C+D)。蓄熱材料係以不銹鋼片製成,寬度為1.5cm,厚度為0.3mm,長度分別為30cm及60cm。 由實驗測試結果得知,以較濃的CO設定濃度能使觸媒轉化器的溫度快速提高,並可於較短的時間達觸媒的反應溫度。加熱位置在觸媒中段、配合較短蓄熱材料(30cm)者,可獲得最佳單位能量的CO轉化量;總輸入能量在100kJ以下,CO反應放出的能量百分比隨著輸入能量的增加而遞增,加熱能量則呈現遞減趨勢;總輸入能量達100kJ之後,兩者則漸趨平緩趨勢發展。另外,以較短的蓄熱材料,配合較高的CO濃度者,在觸媒入口處加熱之較高輸入能量範圍,或於觸媒中段加熱之較低輸入能量範圍,均可獲得較高的CO 轉化效率。

並列摘要


This study investigated the electrically-heated catalyst with a heat storing material. The heat could be stored in the heat storing material. The length of heat storing material was used to adjust temperature rise speed and the stored heat was to improve exhaust emissions of engine during cold start. The studied parameters were the length of heat storing material, heating temperature, CO setting level and heating position. The heating temperature included 100oC, 140oC, 180oC and 220oC. CO setting levels included 1.3% and 1.8%. Heating positions were A+B (entrance of catalyst), B+C and C+D (mid-section of catalyst). The heat storing material was made of stainless steel with 1.5cm in width, 0.3mm in thickness and 30cm and 60cm in length respectively. The experimental results showed that, the rich CO setting level could let the catalyst warm up quickly and to achieve light-off temperature earlier. Heating position of C+D with 30cm heat storing material could obtain the best CO converted mass per unit input energy. As the total input energy was under 100kJ, the ratio of CO released energy increased and heating energy decreased with increasing input energy; as the input energy was over 100kJ, these two energies approached to the stable values. Furthermore, as a shorter heat storing material with higher CO setting level was used, high CO conversion efficiency could be obtained whether heated in the entrance of the catalyst with higher input energy, or heated in the mid-section of the catalyst with lower input energy.

參考文獻


[9] 許天秋,“電熱式觸媒轉化器應用於機車引擎冷起動過程之污染排放特性研究”,碩士論文,崑山科技大學機械工程系,2003年6月。
[3] 洪榮芳,周煥銘,陳俊維,黃仁昭,陳靖杰,徐振雄,吳建發,“機車引擎暫態過程污染排放研究”,第十六屆技職研討會,花蓮市,2001年4月18-19日,第229-238頁。
[5] 洪榮芳,周煥銘,王國佑,周文河,蔡震華,陳健民,李宗龍,“觸媒轉化器對於機車引擎冷起動污染改善之研究”,第六屆車輛工程學術研討會,桃園縣,2001年10月19日,第129-135頁。
[7] 洪榮芳,周煥銘,許天秋,林智鉉,江松桓,楊宗陵,黃永嘉,吳銘仲,林億銘,“預熱式觸媒轉化器於四行程機車引擎冷起動污染排放影響研究”,中國機械工程學會第十九屆學術研討會論文集,雲林縣,2002年11月29-30日,第393-400頁。
Donnerstag and W. Held, “A Modular Numerical Simulation Tool Predicting Catalyst Converter Light-Off by Improved Modeling Of Thermal Management And Conversion Characteristics,” SAE International, SAE paper 2001-01-0940.

延伸閱讀