本論文針對無轉速感測器之直接式磁場導向控制的感應馬達速度驅動系統,提出一個基於順滑模態(sliding mode)技術的電流控制及轉子磁通估測策略。在文獻上,用於直接式磁場導向控制的磁通估測器所估測磁通的準確度,大多會受到馬達參數或轉速資訊的影響。本論文主要目的是採用一個對參數變動具有強健性的適應性順滑模態估測器。所採用的適應性順滑模態估測器是由兩個電流估測器和一個轉子磁通估測器所組成。這個方法是利用兩個滑模電流估測器的相互影響來減輕參數變動所引起轉子磁通估測器的不準確性,使得磁通與轉速的估測對參數變動具有強健性。轉速估測是藉由基於電流與轉子磁通估測器的穩定理論來獲得。在轉子磁通估測中所遇到的純積分問題,本論文是利用正交檢測器(quadrature detector)法來解決。 本論文結合了上述的適應性滑模磁通估測策略與在參考文獻[19]中所提出的滑模電流控制策略,將它們應用在無轉速感測器的感應馬達速度驅動系統上。首先利用MATLAB/Simulink軟體模擬分析來驗證所提出的控制策略,並實際組裝一組以個人電腦為基礎的實驗系統,來測試系統的各項特性。由實驗結果證明,系統在參數變動與負載變動下仍具有良好的強健特性及轉速追蹤能力。
Sliding mode scheme based current controller and rotor flux observer are proposed in this thesis for sensorless speed direct field-oriented control induction motor drives. The flux observers used in direct field-oriented control are often sensitive to the machine parameters. In this thesis, an adaptive sliding mode observer robust to parameters variations is adopted. The adopted adaptive sliding mode observer consists of two current observers and one rotor flux observer. The effects of parameter deviations on the rotor flux observer can be alleviated by the interaction of these two current sliding mode observers in this method. Speed estimation is derived from the stability theory based on the current and rotor flux observers. In this thesis, quadrature detector method is utilized to solve the pure integration problem on the rotor flux observer. This thesis combine the above adaptive sliding mode flux observer with the sliding mode current controller proposed in [19] and apply to a speed sensorless induction motor drivers. First, the proposed control scheme has simulated by MATLAB/Simulink toolbox software to verify the feasibility of the proposed strategy and constructed a PC-based experimental system to test the performances of the drive system. From the experimental results, the system still owns excellent robustness and tracking ability under parameters variations and load disturbances.