透過您的圖書館登入
IP:3.15.4.244
  • 學位論文

以活性碳及含銅離子活性碳分別處理含雙氧水之半導體廠清洗製程廢水及電化學電鍍製程清洗廢水之研究

Treatment of Wastewater Including H2O2 from Wet Clean Process and ECP Process by Activated Carbon and Activated Carbon with Copper ion Individually In IC industry

指導教授 : 李崑池
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究進行以活性碳及含銅離子活性碳分別處理半導體廠清洗製程廢水及電化學電鍍製程清洗廢水中之H2O2研究。探討批次活性碳/雙氧水系統中溶液pH值、活性碳(AC)劑量、氨根離子(NH4OH)濃度及觸媒種類(AC、SiO2、Al2O3)對水溶液中雙氧水分解反應行為的影響;及探討批次含銅離子活性碳/雙氧水系統中溶液pH值、銅離子劑量對水溶液中雙氧水反應行為的影響,並配合雙氧水於水溶液的成分分布、活性碳pHzpc的特性及監測系統反應過程液相H2O2、氫離子/氫氧根離子添加量,以更完整探討並確認系統反應機制進而建立反應動力模式及反應速率式。結果發現H2O2/DI及H2O2/DI/AC批式系統中反應速率常數隨溶液pH值增加而增加外;並發現為維持系統於固定溶液pH值所需添加的H+劑量亦隨溶液pH值增加而增加;去除每mole H2O2所淨產生的OH-量也隨溶液pH值增加而增加,此結果與過去學者認同之機制有所不同,且系統中H2O2的反應速率常數整體隨HO2-(離子態H2O2)濃度增加而增加,雖然H2O2反應速率常數雖然不是與HO2-濃度增加正比關係,但有其正相關性。H2O2/DI/ AC系統中H2O2的反應速率常數約為H2O2/DI系統中H2O2的反應速率常數的30倍, H2O2/DI/ SiO2系統與H2O2/DI/ Al2O3的H2O2的反應速率常數相近,且約為H2O2/DI/ AC系統中H2O2的反應速率常數的1/20到1/30;換言之,SiO2與Al2O3對H2O2雖具催化效果,但效應不大。各溶液pH值中H2O2/AC(Cu2+)系統裏H2O2反應速率常數均高於H2O2/AC系統,且於較高溶液pH值(>4)之後更加明顯,以溶液pH 5為例,H2O2/AC(Cu2+) 系統H2O2反應速率常數約為於H2O2/AC系統H2O2反應速率常數的兩倍,此說明Cu2+離子於活性碳中對H2O2具催化效果。

並列摘要


Treatment of wastewater including H2O2 from wet clean process and ECP process by activated carbon and activated carbon with copper ion individually In IC industry will be carried out in this study. The research will be studied under various solution pH values, types of activated carbon and various species and concentrations of cationic ion for the establishment of the kinetic model. The experimental results shows the decomposition rate constant of H2O2 treated by activated carbon will be 20~30 times than that by self-destruction of H2O2. And the removal efficiency of H2O2 by activated carbon will be increased with the increase of solution pH, specially at the solution pH higher than 7. The reaction path of H2O2 decomposition majorly by way of ionic species of H2O2. SiO2 and Al2O3 just could slightly enhance the removal efficiency of H2O2. Activated carbon with copper ion could enhance the removal efficiency of H2O2 ,and about two times than that by activated carbon.

參考文獻


Georgi, A. and F. D. Kopinke, “Interaction of Adsorption and Catalytic Reactions in Water Decontamination Process. Part I. Oxidation of Organic Contaminations with Hydrogen Peroxide Catalyzed by Activated Carbon. Appl. Catal., B:Environ. 58, 9-18, 2005.
Huang, H.H., M. C. Lu, J. N. Chen and C. T. Lee, “Catalytic Decomposition of Hydrogen Per.oxide and 4-Chlorophenol in the Presence of Modified Activated Carbons,” Vol. 51, pp.935-943, 2003.
Ikeda, S., K. Memoto, M. Funabashi, T. Uchino. H. Yamamoto, N. Yabuoshi, Y. Sasaki, K. Komori, N. Suzuki, S. Nishihara, S. Sasabe and A. Koike “ Process Integration of Single-Wafer Technology in 300mm fab, Realizing Drastic Cycle Time Reduction with High Yield and Excellent Reliability,” IEEE Transaction Semiconductor Manufacturing, Vol. 16, No. 2, 2008.
Kurniawan, T. A. and W. Lo, "Removal of Refractory Compounds from Stabilized Landfill Leachate Using an Integrated H2O2 Oxidation and Granular Activated Carbon (GAC) Adsorption Treatment,” Vol. 43, No. 3, pp. 4079-4091, Water Research, 2009.
Laat L.D. et al.,”Comparative Study of the Effects of Chloride, Sulfate and Nitrate Ions on the Rates of Decomposition of H2O2 and Organic Compounds by Fe (II)/ H2O2 and Fe (III)/ H2O2 ,”Vol. 55, pp.715-723, Chemosphere, 2004

延伸閱讀