透過您的圖書館登入
IP:3.149.255.162
  • 學位論文

無電感式升壓控制器在風力發電系統之設計與應用

Design and Implementation of single-stage boost converter in wind power system

指導教授 : 許源鏞
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究主要目的是針對目前市售小型風力發電機之電能管理系統,提出新的無電感式升壓電路,進行系統整合設計與製作;並建構測試平台,進行輸出功率與電能轉換效率測試,以求得最大輸出功率。 實驗系統測試平台是由個人電腦,搭配Labview圖控軟體及資料擷取卡,進行數據擷取與分析。實驗測試平台包含一組180V有刷直流馬達,由聯軸器直接驅動風力發電機,經由升壓轉換電路,並接到電子式負載,產生電能輸出。 本實驗藉由電子式負載,進行定電流、定電阻與定電壓模式性能測試;由Labview圖控軟體擷取不同轉速及工作週期下,升壓前的電壓、電流和升壓後的電壓和電流,針對有電感式與無電感式充電升壓控制器的輸出功率、電能轉換效率等特性曲線,並進行分析。 實驗結果顯示,以定電流模式進行測試時,不論是有電感式或是無電感式升壓器,工作週期值在50%時,得出輸出功率為最大值。在定電阻模式下,工作週期小於60%範圍內,兩者輸出功率幾乎相同,而有電感式的電能轉換效率會優於無電感式者;工作週期大於60%時,有電感式的輸出功率較大,無電感式的電能轉換效率會優於有電感式者。在定電壓模式下,無電感式與有電感式的輸出功率大致相同,轉速在900~1000rpm,工作週期小於60%時,有感式的轉換效率優於無感式;工作週期大於60%時,有感式與無感式的轉換效率大致相同,轉速在1100~1200rpm時,有感式與無感式的轉換效率大致相同。

並列摘要


The present study was aimed at improving the power management system of small-scale wind turbine generator. Pursuant to this objective, a test bench was built to test the output power of small-scale wind turbine generator. We also introduced a new non-inductor type boost switching circuit to the power management system to improve the power transformation efficiency. The test bench was constructed by the PC with data acquisition system, an 180V brush DC motor through the coupling direct drive wind-driven generator, and imitate to electrical load by boost switching circuit. This experiment was performed in constant current, constant resistance, and constant voltage mode through electrical load. We used PC, microchip microcontroller dsPICF4011, Labview software and designed interface circuit to develop data acquisition system. Data acquisition system measured the output power, voltage and current before boost conversion, voltage and current after boost converter of the inductor or non-inductor type boost converter in assigned duty cycle and different motor rotational speed. The experimental results showed that under constant current mode, the inductor or non-inductor type boost converter had the maximum output power when duty cycle at 50%. Under constant current mode, when duty cycle opened lower than 60%, the output power was the same in both test modes. The output power transformation efficiency of inductor type boost converter was better than non-inductor type. When duty cycle opened larger than 60%, the inductor type boost converter had the better output power, and the non-inductor type output power transformation efficiency was better than inductor type. Under constant voltage mode, the output power of inductor and non-inductor type boost converter was the same. When the rotor speed was at 900 and 1000 rpm and duty cycle opened lower than 60%, the output power transformation efficiency of inductor type boost converter was better than non-inductor type. When duty cycle opened larger than 60%, the output power transformation efficiency of the inductor type and non-inductor type boost converter are the same. When the rotor speed was at 1100 and 1200 rpm, the output power transformation efficiency of the inductor type and non-inductor type boost converter was the same.

參考文獻


[1] 呂紹豪,永磁式同步發電機之風力發電系統之研製,民國92年台灣科技大學碩士論文。
[2] 曾祥雲,單向功率轉換器應用於永磁式同步發電機之風力發電系統之研製,民國93年台灣科技大學碩士論文。
[3] 蔡宗志,以數位訊號處理器為基礎之太陽能與風力發電複合系統之研製,民國94年台灣科技大學碩士論文。
[4] 康宗仁,永磁式同步發電機之風力發電功率控制系統之研製,民國94年台灣科技大學碩士論文。
[5] 潘宣宏,小型風力發電機之混合型交-直流轉換器之研製,民國95年成功大學碩士論文。

延伸閱讀