透過您的圖書館登入
IP:18.224.246.203
  • 學位論文

奈米流體於微流道散熱器之熱流場與冷卻性能分析

Thermal Flow Field and Cooling Performance of Nanofluids in Microchannel Heat Sinks

指導教授 : 陳建信
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文旨在研究使用奈米流體作為工作流體在微流道散熱器中之強制對流熱傳,並探討奈米流體於微流道內之熱流特性與熱傳增益等。本研究採用完整的非達西流場模式來描述流體之流動情況,並以有限差分法求解動量方程式與能量方程式,並就此問題的重要參數對微流道散熱器熱流特性的影響作有系統的討論。 本文將採用與現存文獻相同之微流道幾何尺寸及其相關條件,進行數值分析,並將分析完成之重要參數與其實驗結果比較,結果相當吻合。除此之外,本文也將考慮其他常見之奈米流體的種類,引入本文的數值分析中,加以比較各種奈米流體之冷卻性能,使本論文能更加完整。 本研究成果期望讓吾等對奈米流體之熱流行為有更深入的認識,並希望有助於新一代電子冷卻技術之發展。

並列摘要


The objective of this work is to investigate thoroughly the forced convection heat transfer of nanofluid flow through microchannel heat sinks. In view of the small dimensions of the microstructures, the microchannel heat sink is modeled as a fluid-saturated porous medium by using a general non-Darcy model to describe the flow and the two-equation model is used for heat transfer. A numerical study is carried out to solve the flow field and thermal transport problems. Results for the velocity profiles of the coolant flow and the temperature distributions for both the solid and fluid phases are presented to reveal the flow and heat transfer characteristics of nanofluids flowing in microchannel heat sinks. Also, cooling performance of the microchannel heat sink in terms of the thermal resistance is illustrated for different values of the nano-particle volume fraction. Results for the thermal resistance of water-alumina nanofluid are compared to existing experimental data in the literature. It is found that the results of these two sets match very well. Also, cooling performances of various nanofluids are considered in the present study. The present investigation is expected to be useful for the development of the next-generation electronic cooling techniques.

參考文獻


參考文獻
[1] D.B. Tuckerman and R.F.W. Pease, “High-performance heat sinking for VLSI,” IEEE Electronic Device Letters, Vol. EDL 2, pp. 126-129, (1981).
[2] R.J. Phillips, “Master’s thesis,” Massachusetts Institute of Technology, (1987).
[3] C.S. Landram, “Computational model for optimising longitudinal fin heat transfer in laminar flows,” Heat Transfer in Electronic Equipment, ASME, Vol. 171, (1991).
[4] R.W. Knight and D.J. Hall and J.S. Goodling and R.C. Jaeger, “Heat sink

延伸閱讀