透過您的圖書館登入
IP:3.142.35.75
  • 學位論文

鏈條式吊車齒輪盒沖壓製程分析與模具設計

Analysis of the Stamping Process and Die Design for the Gear Box of Chain Crane

指導教授 : 許源泉
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


鏈條式吊車齒輪盒要求具有優異的耐久性、無故障性、維修性和使用經濟性。故本研究利用有限元素模擬技術對鏈條式吊車齒輪盒進行製程分析,探討沖壓件的流動變形、成形負荷、應力、應變、模具應力與磨耗分析等,並將各道次模擬結果與實驗結果進行相互比對。 研究發現,鏈條式吊車齒輪盒需應用六道次進行沖壓,其製程規劃為第一、二道次為引伸成形,因引伸時有破裂之虞,故需以二個道次完成,再藉由第三、四道次(整型)來使內部高度尺寸達到所要求的高度,第五道次(整型)模具設計用意在於對成品件做最後之外觀定型,使其外觀要求無誤,最後再由第六道次來施行沖孔、下料獲得最終成品件。 而研究結果得知板材在引伸過程中,板材的流動方向是隨著在徑向產生拉伸應力,板材頂部位置材料流動的方向為向四周流動,側壁位置則隨著引伸方向往下流動,而在底部位置由於法蘭邊已被壓料板拘束故只能向兩側流動變形,在第三到五道次整型製程中,由於需要在頂部位置打一凸包且側壁位置需往內變形以達到成品件之尺寸要求,故頂部位置在凸包處會產生一壓縮變形流動,而側壁位置則會往內部方向流動變形。第六道次沖孔及切邊下料過程中,板材的流動變形主要集中在沖孔處與切邊下料的位置,其速度場也分佈地相當密集,而其他區域材料的流動則較為不明顯。而在引伸成形材料變形區域主要集中於長軸法蘭邊、成形圓角及側壁處,易造成破裂現象產生。在整形製程中打凸包處相當於閉模成形,故應力、應變會最大。 本研究經由實際各道次實驗來驗證有限元素模擬之可行性,並比對其內側高度尺寸與外側高度尺寸,在最後之成品件外觀尺寸之比較下可得知,模擬與實驗的誤差為外側高度誤差約為1.3%,內側高度誤差約為2.7%,可得知模擬與實驗之相似度頗為相近,最終沖壓製品的誤差不超過3%,可知其模擬具有相當可信度及參考性。

關鍵字

有限元素分析 引伸 沖剪

並列摘要


Analysis of the stamping process and die design for the gear box of chain crane , maintenance and use of economic nature. The use of finite element simulation chain crane gear box analysis of the process, explore the flow and deformation of the stamping, forming load, stress, strain, die stress and wear analysis, and each pass simulation results with experimental results. mutual comparison. The study found that the chain crane gear box required the application of six stamping process planning for the first two times forming an extension of the danger of rupture due to an extension of time, it takes two passes to complete by the first height of the internal dimensions with three, four (integer) to reach the required height, Fifth Avenue (integer) mold design intention is to do the final appearance of the finished part stereotypes make it visually requirements correctly, and finally by sixth pass to Shi punching, the following information to obtain the final product. While the results learned that plate in the extension of the process, the sheet liquidity direction is as in the radial direction to produce tensile strain, plate at the top position of material flow moving the direction as to the surrounding flow moving, sidewall position is with the extension of the direction of downward flow dynamic, Flange edge pressure data plate binding in the bottom position can only be to the both sides of current deformation in the third to five times the integer process at the top position to play a convex hull and the side wall position required deformation requirements in the size of the finished part, so the top position at the convex hull will produce a compressive deformation flow, the sidewall location is to the current internal direction deformation. Sixth pass punching and cut edge under the information, plate flow dynamic deformation is mainly concentrated in the punching at and cut edge under the information of the position, its speed level field also distribution to fairly intensive, while other regions of material data of the current move is relatively not obvious. Extension forming material deformation zone is mainly focused on the long axis of the flange side, forming rounded corners and sidewalls at the trade caused by the rupture phenomenon. To play in the shaping process in the convex hull area is equivalent to the closed mold forming, so the stress, strain will be the largest. In this study, through the actual pass experiments to verify the feasibility of the finite element simulation, and height dimensions than its medial and lateral height dimensions can be learned in the final finished appearance of the size of the next simulation and experimental error lateral high degree of error of about 1.3%, medial height error of about 2.7%, the similarity of the simulation and experiment can be learned quite similar, the final the stampings error does not exceed 3%, and shows that the simulation has considerable credibility and referencesex.

並列關鍵字

Finite element analysis Drawing Piercing

參考文獻


[23]李榮顯、陳怡安、周金龍,數值模擬於溫鍛模具磨耗分析之應用,鍛造季刊,第10卷第4期,90年。
[26] 惠達科技股份有限公司http://www.fedtec.com.tw/
[3] Z. Zimniak, “Implementation of the forming limit stress diagram in FEM simulations”, Journal of Materials Processing Technology, Vol. 106 , Pages 261-266, 2000.
[4] D. H. Park, S. S. Kang, S. B. Park, ” A study on the improvement of formability for elliptical deep drawing processes”, Journal of Materials Processing Technology, Volume 113, Issues 1-3, Pages 662-665, June 2001.
[5] Manabu Gotoh, Young-soo Kim, Minoru Yamashita, “A fundamental study of can forming by the stretch-drawing process”, Journal of Materials Processing Technology, Volume 138, Issues 1-3, Pages 545-550, July 2003.

延伸閱讀