透過您的圖書館登入
IP:18.219.14.63
  • 學位論文

水熱法生長可控制範圍生長的氧化鋅奈米棒陣列應用於二氧化鈦染料敏化太陽能電池之研究

Application of Hydrothermal Growth of Density Controllable ZnO Nanorod Arrays on TiO2 Dye-sensitized Solar Cell

指導教授 : 吳添全
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究是利用水熱法以及刮刀法在ITO基板上製作出氧化鋅及二氧化鈦工作電極運用在染料敏化太陽能電池。生長可控範圍的氧化鋅奈米棒,結合氧化鋅奈米柱及二氧化鈦奈米薄膜之工作電極。本論文通過使用濺鍍沉積ZnO晶種層在ITO基板與單層奈米球,結合適合用於高溫沉積的遮罩,使用水熱法在95℃下生長氧化鋅奈米柱。染料敏化太陽能電池的製備使用的是已生長氧化鋅奈米柱的ITO基板,及使用刮刀法塗佈二氧化鈦奈米粒子,經過退火之後浸泡於染料中,取出後與Pt背電極封裝,注入電解液後完成染料敏化太陽能電池。 透過FE-SEM分析,當雙層結構薄膜經過加壓後,可以成為複合結構,複合結構的電池效率為2.18%,經過EIS分析,確定複合結構確實有較為低的Rk值﹐透過IPCE的分析發現複合結構的光子轉換效率為57.4%,較雙層結構高。

並列摘要


In this study, ZnO and TiO2 working electrodes were prepared on ITO substrates by hydrothermal method and doctor blade method in dye sensitized solar cell, with respectively. We have deposited ZnO seed layer on ITO substrate by sputter, then nanosphere monolayers were spin coating on ITO substrate. Thus, we can make some kinds of mask that is suitable to sustain higher deposition temperature over 95oC,which is the growth temperature of ZnO nanorods by hydrothermal method. Then TiO2 nanoparticles layer were cover in Zno nanorods array by doctor blade method. The samples were soaked in dye after annealed, encapsulated with Pt back electrode to prepare the dye-sensitized solar cell, so that we can measured the cell efficiency.

參考文獻


[1] M. Gratzel, “Photoelectrochemical cells”, Nature, 414 (2001) 338.
[2] G.R.A. Kumara, S. Kaneko, M. Okuya, K. Tennakone, 2002, “Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a CuI Crystal Growth Inhibitor”, Langmuir, 18(26), 10493.
[3] M. Quintana, T. Edvinsson, A. Hagfeldt, and G. Boschloo, “Comparison of dye-sensitized ZnO and TiO2 solar cells: studies of charge transport and carrier lifetime”, Journal of Physical Chemistry C, 111 (2007) 1035.
[5] Dittrich, Th. Lebedev, and E. A. Weidmann, “Electron drift mobility in porous TiO2 (anatase)”, Physica Satus Solidi A, R5 (1998) 165.
[7] T. Yasuda, S. Yamasaki, and S. Gwo, “Nanoscale Selective-Area Epitaxl Growth of Si Using An Ultrathin SiO2/Si3Ni4 Mask Patterned by An Atomic Force Microscope,” Appl. Phys. Lett. 77 (2000) 3917-3919.

延伸閱讀