透過您的圖書館登入
IP:3.16.29.209
  • 學位論文

鎵摻雜氧化鋅奈米柱成長於玻璃與可撓式基板上並探討光檢測器與場發特性

Field Emission and Photodetector Characteristics of Gallium-Doped Zinc Oxide Nanorods Grown on Glass/Flexible Substrates

指導教授 : 楊勝州
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要研究方向可分為三部分。第一部分簡述如何製備氧化鋅奈米柱結構與其成長機制。第二部分為紫外光檢測器量測相關探討。第三部分簡述製備氧化鋅奈米柱之光檢測器與場發射元件之應用。以上研究方向略述於下: 第一部分:氧化鋅與鎵摻雜氧化鋅奈米柱之合成研究 一個新穎的氧化鋅與鎵摻雜氧化鋅奈米柱狀結構,使用硝酸鋅與六亞甲基四胺作為反應物,以硝酸鎵作為摻雜物,以低溫水熱法在玻璃基板上成長氧化鋅與氧化鎵鋅奈米柱狀結構,利用摻雜鎵後,其物理上結構的變化,與電性上的變化。由SEM、XRD、TEM與PL分析結果得生成氧化鋅與氧化鎵鋅奈米柱柱寬度分別為50 nm與45 nm,高度分別為2.31 μm與1.76 μm,且奈米柱為單晶纖鋅礦結構。根據TEM量測中,可以發現成長方向以(002)為主要成長方向,且兩者間的晶格間距差異不大,選區電子繞射圖中可以觀察到兩者都是單晶結構。XRD分析可以發現當摻雜後,所有繞射峰都有明顯下降,這符合前面的SEM圖觀測到的情況。PL圖可以發現在缺陷峰有明顯抑制,主要是因為鎵摻雜能夠有效的與氧做結合,使得氧空缺下降。 第二部分:氧化鋅與氧化鎵鋅奈米柱之光檢測器之研究 一個新穎的氧化鋅奈米柱光檢測器,利用鎵摻雜後使其光暗電流比上升,將摻雜與未摻雜氧化鋅奈米柱組裝成元件。利用波長為365 nm之紫外光偏壓1V進行測試,測得在照光下所量測出氧化鋅的光暗電流比21.1,摻雜後其光暗電流比上升至116,同時在照光下的反應速度與非照光下的穩定性與可逆性。並且製作與可撓式基板上,並且探討其彎曲後造成的影響。 第三部分:氧化鋅與鎵摻雜氧化鋅奈米柱之場發射元件之研究 當未摻雜的氧化鋅做場發量測時,其Turn-on電場為5.36 V/μm而其場增強因子為3846,當摻雜後降低Turn-on電場3.14 V/μm並有效提升場增強因子至7841,故鎵摻雜也可以有效的增加場增強因子與降低Turn-on電場。

並列摘要


In this study, high-density single crystalline Ga doped ZnO (GZO) nanorods were grown on glass/flexible substrate by the hydrothermal method. The structural and optoelectronic properties of Ga-doped ZnO nanorods are studied. The GZO nanorods microstructure was studied by scanning electrical microscope (SEM). Form SEM image, pure ZnO and Ga-doped nanorods keep wurtzite structures. When the Ga–doped into ZnO nanorods, the average length is decreased from 2.31-μm to 1.76-μm and diameter is decreasd from 50-nm to 45-nm. The existence of Ga was examined by energy diffraction spectra (EDS), indicating Ga atom entered into the ZnO lattice. The structural characteristics of the GZO were measured by X-ray diffraction (XRD). It was found that the peaks related to the wurtzite structure ZnO (100), (002), (101), (102), (103), and (112) diffraction peaks, it correspond JCPDS Card No.3601451. The (002) peak indicates that the nanorods were preferentially oriented in the c-axis direction. The optical properties of the GZO were measured by Photoluminescence spectra. It was found that all GZO nanorod arrays showed two different emissions, including UV (ultraviolet) and green emissions. A pure ZnO and Ga-doped ZnO nanorods metal-semiconductor-metal (MSM) ultraviolet (UV) photodetector (PD) was also fabricated. Compare the Pure and Ga-doped ZnO nanorods photodetector photo-to-dark current ratio increased from 21.1 to 116 biased at 1 V. It was also found that the turn-on electrical field was reduced from 5.36 to 3.14 V/μm and the field enhancement factor was enhanced from 3846 to 7841.

並列關鍵字

ZnO Ga-doped Photodetector Field emission

參考文獻


[19]Chia Ying Lee, Tseung Yuen Tseng, Seu Yi Li2 and Pang Lin (2003), “Growth of Zinc Oxide Nanowires on Silicon (100)”, Tamkang Journal of Science and Engineering, Vol. 6, No. 2, pp. 127-132.
[24]施丞達(2004), “化學氣象沈積法製備氮化鎵奈米線及奇特行性研究”, 國立成功大學材料科學及工程學系.
[29]姚潔宜 2004, “低溫燒結氧化鋅奈米薄膜之特性研究”, 國立臺北科技大學製造科技研究所.
[1]Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, H. Shen,M. Wraback (2000), “Ultraviolet detectors based on epitaxial ZnO films grown by MOCVD”, Journal of Electronic Materials, Vol. 29, pp. 69-74.
[2]V.R. Shinde, T.P. Gujar, C.D. Lokhande (2007), “LPG sensing properties of ZnO films prepared by spray pyrolysis method: Effect of molarity of precursor solution”, Sensors and Actuators B: Chemical, Vol. 120, pp. 551-559.

延伸閱讀