透過您的圖書館登入
IP:18.221.198.132
  • 學位論文

整合雷射摻雜及電鍍銅技術增強網印式單晶矽太陽能電池之上電極特性研究

Improved Front Contact Characteristics of Screen-Printed Monocrystalline Silicon Solar Cells by Laser Doped and Electroplated Copper

指導教授 : 鄭錦隆
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究採用磷膠搭配使用Nd:YAG雷射其波長為1064 nm進行雷射上電極選擇性射極摻雜,其優點為避免使用傳統高溫擴散製程及微影製程,其中雷射參數包括不同雷射圖形以及雷射功率等,搭配丙銅(Acetone)與不同氫氧化鉀(KOH) /液丙醇(IPA)/DIW以及氨水(NH4OH)/雙氧水(H2O2)鹼蝕刻液濃度以及蝕刻時間移除雷射後表面殘留物,以降低載子復合速率。同時利用電鍍銅技術成長銅電極應用於太陽能電池之上電極,相較於一般傳統網印式太陽能電池所採用的銀膠電極,電鍍銅擁有低串聯電阻且於室溫下就能進行,其中藉由改變不同電鍍時間進行探討,藉此提升網印式單晶矽太陽能電池之光電特性。 由實驗結果得知,當雷射功率為4 %、雷射焦距為-50°、雷射間距為5 μm、雷射速度為25 %、雷射定義圖形為電極間距1.79 mm與電極寬度為10 um等條件下進行雷射摻雜。且搭配後續浸泡丙酮20分鐘以及使用氫氧化鉀(KOH)/液丙醇(IPA)/DIW蝕刻液濃度為1.1%、蝕刻溫度83±2 ℃以及蝕刻時間30秒鐘或氨水(NH4OH)/雙氧水(H2O2)蝕刻液濃度比例為1:2、蝕刻溫度80℃且時刻時間為180秒移除雷射後表面殘留物。而後搭配電鍍銅技術,其電鍍電流密度30 mA/cm2與電鍍時間為15分鐘,可獲得最佳光電轉換效率15.5 %,其開路電壓為607 mV,短路電流密度為34.5 mA/cm2,填充因子為0.74。

並列摘要


In this study, the selective emitter doping was presented by combined the phosphorus paste and the Nd:YAG laser with a wavelength of 1064 nm. The advantages of this method are diffusion at low-temperature and non-photolithograph process. The laser parameters include the laser pattern and the laser power. To reduce carrier recombination velocity, the residue and the laser damage were investigated by various concentrations and etching time of the potassium hydroxide or dilute ammonia peroxide mixtures, as well as the immersed time of acetone solution. Moreover, the electroplated copper technology was utilized to form the copper electrode as the front contact of the screen-printed monocrystalline silicon solar cells (SPMSSCs). Compared with silver paste, the advantages of the electroplating copper include low series resistance and formation temperature. Finally, the effects of the electroplating copper with various electroplating time on SPMSSCs were investigated. The experiment results indicate that the enhanced photovoltaic characteristics were demonstrated by the laser power of 4%, the laser focus of -50 degree, the laser pitch of 5μm, the laser speed of 25%, the finger space of 1.79 mm and the width of 10 um. After laser pattern, the residue and the laser damage can be removed by the acetone solution for 20 min and the potassium hydroxide (KOH) solution of 1.1% at 83±2 ℃ for 10 s or dilute ammonia peroxide mixtures solution (APM) of 1:2 for 180s at 80℃, respectively. Finally, a conversion efficiency of 15.5 % with an open circuit voltage (Voc) of 607 mV, a short-circuit current density (Jsc) of 34.5 mA/cm2, and a fill factor (FF) of 0.74 was achieved by the electroplated copper at the current density of 30 mA/cm2 and the electroplated time at 15 min.

參考文獻


[1] P. Vitanov, E. Goranova, V. Stavrov, P. Ivanov, P. K. Singh, “Fabrication of buried contact silicon solar cells using porous silicon”, Solar Energy Materials & Solar Cells, Vol. 93, (2009) pp.297-300.
[2] R. Muller, C. Reichel, J. Schrof, M. Padilla, M. Selinger, “Analysis of n-type IBC solar cells with diffused boron emitter locally blocked by implanted phosphorus”, Solar Energy Materials & Solar Cells, Vol. 142, (2015) pp. 54-59.
[3] J. Cho, H. Lee, D. Hyun, Y. Lee, W. Jung, J. Hong, “Efficiency enhanced emitter wrap-through (EWT) screen-printed solar cells with non-uniform thickness of silicon nitride passivation layer in via-holes”, Solar Energy, Vol. 90, (2013) pp. 188-194.
[4] E. Lohmuller, M. Thanasa, B. Thaidigsmann, F. Clement, “Electrical properties of the rear contact structure of MWT silicon solar cells”, Solar Energy Materials & Solar Cells, Vol. 137, (2015) pp. 293-302.
[5] M. A. Green, “The passivated emitter and rear cell (PERC): From conception to mass production”, Solar Energy Materials & Solar Cells, Vol. 143, (2015) pp. 190-197.

延伸閱讀