透過您的圖書館登入
IP:18.118.28.197
  • 學位論文

以抗反射層提升III-V族太陽能電池及面射型雷射之效能研究

Study on Anti-Reflection Layer to Improve the Efficiency of Vertical Cavity Surface-Emitting Laser and III-V Solar Cell

指導教授 : 雷伯薰
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


摘要 隨著石油能源逐漸耗竭,加上地球之二氧化碳排放量過多所引發的溫室效應,許多替代能源被開發出來,來解決石油耗竭及溫室效應等問題。在這些替代能源中以半導體太陽電池最受到注目。半導體太陽電池的種類可分為下列幾種:(一)非晶矽、單晶矽及多晶矽太陽能電池、(二)III-V族化合物半導體太陽能電池及(三)II-VI族化合物半導體太陽能電池。其中非晶矽、單晶矽及多晶矽太陽能電池為目前最為廣泛使用之半導體材料,其優點在於價格低且可大面積化(單晶矽除外),因此可用於發電系統中。然而,其發電效能並不高,因此無法應用於衛星發電及高效能需求之光伏系統市場中。而III-V族化合物半導體太陽能電池及II-VI族化合物半導體太陽能電池雖然在價格上及大面積的要求上無法與矽材料匹敵,但是其光電轉換效能卻可達矽材料的3至4倍。地表面積將因人口及糧食等問題而逐漸減少,因此,未來的光伏系統的趨勢將在於高效能之發電系統而非大面積之發電系統,所以III-V族化合物半導體太陽能電池及II-VI族化合物半導體太陽能電池又稱為第三代太陽電池。本論文主要針對提升III-V族化合物半導體太陽電池之效能提升進行研究,主要研究內容是利用不同材料製作成的抗反射層來降低入射光的反射以增加太陽能電池的光入射量,藉以提昇III-V族化合物太陽電池之效能。 本論文另一項研究重點是利用不同材料製作的抗反射層與電流散佈層來增強850nm面射型雷射之輸出光功率。因面射型雷射具有低製作成本、圓形光束輸出、單一縱模操作、以及整合二維陣列的潛在特性,因此在長波長範圍之光纖通信、短距數據通信與短波長範圍之高密度光學資訊儲存、高速掃瞄輸出、商業化光源及顯示應用上,成為極具潛力的發光源

並列摘要


Abstract Because of dissipation of gasoline fuel and the greenhouse effect caused by the exhaust of carbon dioxide, it is important to find the substitution fuel to solve these problems. Semiconductor based solar cells which can convert the solar energy into electric power are attracted for those of substitution fuels. The semiconductor based solar cells can be divided into some categories including (1) silicon based solar cell, (2) III-V group compound semiconductor solar cell, and (3) II-VI group compound semiconductors solar cell. The solar cell composed of amorphous silicon, single crystal silicon and poly-silicon is most popular material system. The advantages of this material system are low cost and large area application. However, the converting efficiency for this material system is lower than those of compound semiconductor solar cells. It is not suitable for power satellite and emerging terrestrial market involving utility-scale power generation. Although the III-V group and II-VI group which cost expensively and bad for large area application, the converting efficiency is higher than that of silicon based solar cell. The mankind-lived space in earth will reduce by the increasing population. It means that the tendency of the photovoltaic system will be toward a high efficiency system. The larger area application is not a factor for the future power generation. The high efficiency III-V group and II-VI group compound semiconductor solar cells are satisfied these demands so that they are also called three generation solar cells. In this thesis, different anti-reflective (AR) layer was used to improve the efficiency of III-V solar cell. The introduction of AR layer can reduce the reflection between semiconductor and air, and then increase the injection photons into the active layer. The short current density can be enhanced by the increasing injection photons so that the efficiency of III-V solar cell can be improved. Furthermore, the study of different AR layer was used in 850 nm vertical cavity surface-emitting laser (VCSEL) to increase the light output power. VCSEL represents the advantages of low-cost, circular emitting pattern, single-mode spectrum, and easy fabrication for two-dimensional array so it can be used in the application of long-haul wavelength communication, short-distance communication, data storage of optical information, high speed scan, and light source in display.

參考文獻


[1] K. Tai, G. Hasnain. D. Wynn, R. J. Fischer and Y. H. Wang et al, 1990, ”90 % coupling of top surface emitting GaAs / AlGaAs quantum well laser output into 8um diameter core silica fiber”, Elec. Lett. 13th, Vol. 26 No. 19.
[2] Y. J. Yang, T. G. Dziura, S. C. Wang, R. Fernandez, G. Du, and S. Wang , 1991 ”Low threshold room-temperature operation of a GaAs single quantum well mushroom structure surface emitting laser”, Soc. Photo-opt Instrum. Eng., Vol. 1418, pp.414-421.
[3] Y. J. Yang, T. G. Dziura, R. Fernandez, S. C. Wang, G. Du, and S Wang, 1991 ”Low threshold operation of a GaAs single quantum well mushroom structure surface emitting laser”, Appl. Phys. Lett. , 58, pp 1780-1782.
[4] W. Hsin, G. Du, J. K. Gamelin, K. J. Malloy, S. Wang, J. R. Whinnery, Y. J. Tang, T. G. Dziura, and S. C. Wang., 1990 ”Low threshold distributed Bragg reflector surface emitting laser diode with semiconductor air-bridge-supported top mirror”, Electron. Lett., 26, pp. 307-308.
[5] T. G. Dziura, Y. J. Yang, and S. C. Wang, 1990, ”High modulation rate potential for surface emitting laser diode arrays”, Soc. Photo-opt. Instrum Eng., Vol. 1217, pp. 119-125.

延伸閱讀