在本研究中,採用陽極處理法製備二氧化鈦奈米管陣列和水熱法製備二氧化鈦奈米柱,並應用於染料敏化太陽能電池(Dye-sensitized solar cell;DSSC)之光陽極。使用場發射掃描式電子顯微鏡(FE-SEM)、X光繞射儀(XRD)、紫外與可見光譜(UV-vis)、光電轉換效率分析及交流阻抗圖譜作分析。透過XRD分析發現,經退火處理之二氧化鈦奈米管和二氧化鈦奈米柱具有更好的銳鈦礦相。再藉由FE-SEM分析發現,二氧化鈦奈米管和二氧化鈦奈米柱的長度皆為5 μm。在相同奈米管和奈米管柱長5 μm所製備出染料敏化太陽能電池,並使用太陽光模擬器光功率為AM 1.5 100 mW/cm2中量測,二氧化鈦奈米管之背照光式及正照光式獲得光電轉換效率分別為2.63%及4.24%,而二氧化鈦奈米柱正照光式染料敏化太陽能電池所獲得光電轉換效率為0.81%。再經由四氯化鈦處理後,二氧化鈦奈米管管壁上會附著二氧化鈦奈米粒子;而經由鹽酸蝕刻後,二氧化鈦奈米柱變的較稀疏,使得二氧化鈦奈米管及二氧化鈦奈米柱之染料吸附量增加,進而提升DSSC的光電轉換效率。經四氯化鈦處理之背照光式及正照光式獲得光電轉換效率分別為3.54%及5.07%;而經鹽酸蝕刻之正照光式獲得光電轉換效率為1.35%。
In this study, we used electrochemical anodization method to prepare TiO2 nanotubes arrays and hydrothermal method to prepare TiO2 nanorods, and applied them on the photo-electrodes of dye-sensitized solar cells (DSSCs). The nanostructures and photo-electrodes were investigated by field emission scanning electron microscopy (FE-SEM), X-ray Diffraction (XRD) , I-V character-istic analyses, Ultraviolet-visible spectroscopy (UV-vis), and incident Photon conversion effi-ciency (IPCE). Through XRD analysis, annealing of TiO2 nanotubes and TiO2 nanorods have better anatase phase. Then by FE-SEM analysis showed that the length of the TiO2 nanotubes and TiO2 nanorods are 5 μm. In the same column nanotubes and nanorods are 5 μm prepared by dye-sensitized solar cells, and the use of solar simulator light power of AM 1.5 100 mW/cm2 in the measurement, the conversion efficiency of TiO2 nanotube photo-electrodes under back-illuminated and front-illuminated were 2.63% and 4.24%, the conversion efficiency of TiO2 nanorods photo-electrode under front-illuminated was 0.81%. After TiCl4, the walls of TiO2 nanotubes were coated with TiO2 nanoparticles. To enlarge the space between TiO2 nanorods, we put TiO2 nanorods in the liquid of HCl to etch them. These could provide large surface area of TiO2 nanotubes and nanorods to adsorb dye, resulting in the improvement of conversion efficiency for DSSCs. After TiCl4 treatments, the best conversion efficiency of TiO2 nanotubes under back-illuminated and front-illuminated were 3.54 % and 5.07 %, and after HCl treatments, the best conversion efficiency of TiO2 nanorods under front-illuminated was 1.35 %, respectively.