透過您的圖書館登入
IP:3.144.84.155
  • 學位論文

應用T-S模糊模式設計之車輛側向控制系統

A T-S Fuzzy Model-Based Design for Vehicle Lateral Control System

指導教授 : 丁振聲
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本文旨在研究應用T-S模糊模式於車輛側向控制系統之設計方法。車輛側向系統控制的目的為:當車輛因非主動駕駛而偏離車道中心時,可以由自動導向的裝置,控制車輛前進的方向,使其重新駛回車道,以保持車輛的行車安全。自動導向為智慧型車輛控制系統中的一部分,其主要核心則是車輛的側向系統控制。 以往對於側向控制系統設計之研究,大多以二階自行車模型為理論探討之依據,此模式雖有結構簡單設計容易的特性,但僅適用在低側向加速度及前向速度固定的條件下。當側向加速度增加時。則系統呈現非線性特性,T-S模糊模式可以有效的描述非線性系統的動態,本文乃應用T-S模糊控制的方法設計車輛的側向控制系統,使車輛在前向速度變化的情況下能完成自動導向的操縱。 本文除了研究控制設計之理論外,並應用電腦模擬及實驗方式,印證所提出的理論其正確性與實用性。在實驗方面,製作一台小型的原型車,裝置驅動馬達、紅外線感測器、Zigbee無線傳輸,系統控制核心為數位訊號處理器F28335,由於其功能完備,可以容易完成軟硬體的設計程序。經由系統鑑別建立原型車的數學模式,據此分析與設計系統,實現控制理論,發展實體的車輛側向系統控制技術。

並列摘要


This thesis presents a T-S fuzzy model-based control approach for vehicle lateral system. As a core of automatic guidance system (AGS), the vehicle lateral control is mainly to deal with lane keeping problem. When vehicle deviates from the center of the present lane without active maneuvering, AGS is activated in time to regulate the vehicle back to the center of the lane. With AGS, vehicle lateral dynamics can be properly controlled to fulfill the objective of driving safety. In the past, most studies on the design of lateral control system were based on the bicycle model, which was a set of second-order time-invariant differential equations. This model can only describe the vehicle lateral dynamics in the conditions of low lateral acceleration and constant forward speed. Under a moderate to high-g acceleration, the behavior of vehicle lateral system becomes nonlinear. Due to the fact that T-S fuzzy model can effectively approximate complex nonlinear system, this study uses the fuzzy control method to develop the vehicle lateral control system. Based on the proposed approach, the objective of automatic guidance can be achieved. iii The computer simulation and experimental results are provided to validate the presented control scheme. In particular, a down-size model car is revamped and equipped with driving motors, infrared sensors, gyro, and Zigbee wireless transmission module. With this prototype, the exploration of vehicle lateral control theory and development of AGS technology can be carried out. The core of the control is the digital processor F28335 that facilitates the designing work both in hardware and software. Through the system identification, the mathematic model of prototype car is constructed to ease the theoretic study and development of practical control technology for AGS.

參考文獻


[1] R.E. Benton and D. Smith, “A static-output-feedback design procedure for robust emergency lateral control of a highway vehicle,” IEEE Trans. Contr Syst Technol, vol. 13, no. 4, pp. 618-623, 2005.
[2] S.B. Choi, “The design of a look-down feedback adaptive controller for the lateral control of front-wheel-steering autonomous highway vehicles,” IEEE Trans. Vehicular Technol, vol. 49, no.6, pp. 2257-2269, 2000.
[3] D.E. Smith and J.M. Starkey, “The effects of model complexity on the performance of automated vehicle steering controllers: controller development and evaluation,” Vehicle Syst Dyn, vol.23, pp.627-645, 1994.
[4] D.E. Smith and J.M. Starkey, “The effects of model complexity on the performance of automated vehicle steering controllers: model development, validation and comparison,” Vehicle Syst Dyn, vol.24, pp. 163-181, 1995.
[5] J.I. Hernandaz and C.Y. Kuo, “Lateral control of higher order nonlinear vehicle model in emergency maneuvers using absolute positioning GPS and magnetic markers,” IEEE Trans. Vehicular Technol, vol. 53, no. 2, pp. 372-384, 2004.

被引用紀錄


丁偉哲(2015)。應用視覺辨識與模糊方法設計之車輛側向控制系統〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2015.00045
戴凱易(2014)。以視覺辨識設計之車輛側向控制系統〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2014.00240

延伸閱讀