透過您的圖書館登入
IP:3.149.243.32
  • 學位論文

Ta-Si-C 非晶質擴散阻障應用於 銅製程之特性研究

Characteristics of amorphous Ta-Si-C film as a diffusion barrier for copper metallization

指導教授 : 方昭訓
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在超大型積體電路連導線製程應用,銅具備低電阻與較佳之抗電致遷 移能力,故以銅做為金屬連接導線是必然的趨勢。但為解決銅與矽基材間 相互擴散的問題必須在銅與矽間沉積上具有低電阻係數、高熱穩定性及良 好界面附著性的擴散阻障層以防止銅與矽反應。 Ta-Si-N 熱穩定性可達900oC/ 1hr,但其電阻率達800μΩ-cm,且由於使 用反應性氣體,故製程再現性欠佳。故本研究以直流磁控濺鍍法製備Ta-Si-C 使用C 取代N 增加製程穩定性並期以應用於銅連線的阻礙層。Ta-Si-C 薄膜 使用不同氣體進行電漿改質,探討Ta-Si-C 薄膜的相變化及熱穩定性。之後 將薄膜進行熱處理,並藉由四點探針(FPP)、X 光繞射分析儀(XRD)、穿透 式電子顯微鏡(TEM)分析薄膜特性。 本研究並探討如何減少Ta-Si-C薄膜應用於銅製程中擴散阻礙層所造成 Ta-Si-C(O)x氧化層,並分別進行Ar+H2及Ar+N2兩種氣體的電漿表面改質 Ta-Si-C薄膜,接著製備Cu/Ta-Si-C/Si結構。 結果顯示以Ar+H2及Ar+N2兩種氣體的電漿改質Ta-Si-C薄膜相對於未 經電漿改質Ta-Si-C薄膜有較佳的效果。由結構分析顯示使用Ar+N2及Ar+H2 兩種氣體的電漿改質Ta-Si-C薄膜初鍍膜初為非晶質,薄膜的電阻率分別為 400μΩ-cm、372μΩ-cm與361μΩ-cm。隨著熱處理溫度的增加,Ar+N2與Ar+H2 電漿表面改質薄膜在700oC時TaSi2有微晶的現象產生,而使用Ar+N2電漿表 面改質薄膜則在750oC才有結晶的現象產生。使用Ar+H2電漿表面改質可有 效使薄膜變得更緻密並降低電阻率;結果顯示Ta-Si-C合金薄膜經Ar+N2氣氛 下表面改質可改善Ta-Si-C薄膜的熱穩定性,並將此製程應用於銅製程作為 擴散阻礙層, Cu/Ta-Si-C(5nm)/Si結構使用Ar+H2進行電漿表面改質薄膜的 熱穩定性到達750℃/1 min,Cu/Ta-Si-C(5 nm)/Si結構使用Ar+N2進行電漿表 面改質薄膜的熱穩定性到達800℃/1 min,結果顯示使用Ar+N2進行電漿表面 改質可提升薄膜的熱穩定性。

並列摘要


Copper is to be used in deep submicron ultra-large scale integration (ULSI) metallization due to its lower resistivity and better electromigration resistance. Since Cu diffuses repidly in Si, and therefore introduces deep-level traps, a proper diffusion barrier is needed. The barrier should have low resistivity, high thermal stability, and good adhesion with Cu and the substrate. Ta-Si-N thin films failure temperature of 800 oC/1 hr, and the electrical resistivity was 800 μΩ-cm, but it has bad reproducibility.We expect C to replace N then add stability of process.This study prepared Ta-Si-C thin films using DC magnetron co-sputtering for copper metallization, subsequently followed by plasma surface treatment in Ar+H2 and Ar+N2 to evaluatie the phase transition and thermal stability of the annealed. Thin film properties and failure behavior of the studied films were elucidated by using four-point probe (FPP), X-ray diffraction (XRD), transmission electron microscopy (TEM). To reduce the thickness of Ta-Si-C(O)x , plasma treatmen on Ta-Si-C thin films by Ar+H2 and Ar+N2 , and prepare Cu/Ta-Si-C/Si structure, and plasma treatmen on Ta-Si-C thin films by, Ar+H2 and Ar+N2. Without plasma treatment on Ta-Si-C indicated that Ta-Si-C thin films is amorphours, and the electrical resistivity was 400 μΩ-cm, the electrical resistivity was 372 μΩ-cm using Ar+N2 plasma treatment, and the electrical resistivity was 361 μΩ-cm using Ar+H2 plasma treatment. The without plasma treatment or Ar+H2 plasma treatment induced the Ta-Si-C film became micro-crystallization TaSi2 phase when the film was annealed at 700 oC, and Ar+N2 plasma treatment resulted in Ta-Si-C film crystallite into TaSi2 phase when the film was annealed at 750 oC. Ar+H2 plasma treatment is effective in reducing resistivity of thin film, and Ar+N2 plasma treatment is promising in improving thermal stability of thin film. Using Ar+H2 plasma treatment on 5 nm Ta-Si-C film for Cu/Ta-Si-C/Si structure, the stacked film has a failure temperature of 750 oC/1 min, but using Ar+N2 plasma treatment on 5 nm Ta-Si-C film for Cu/Ta-Si-C/Si structure, the stacked film has a failed at 800oC/1 min. The experiment results indicated Ar+N2 plasma treatment is effectively on enhancing thermal stability of Ta-Si-C thin films.

參考文獻


[2] G. E.Moore, “Cramming more components onto integrated
Devicesand Circuits Science”, Technology and Manufacturability
Symposium, 25(1994).
[4] S. P. Murarka, “Multilevel interconnections for ULSI and GSI era,” Mater.
[5] The International Technology Roadmapfor Semiconductors, ITRS, (2003).

延伸閱讀