透過您的圖書館登入
IP:3.21.158.148
  • 學位論文

以數位訊號處理器為基礎之電磁懸浮平台驅動與伺服控制系統設計

DSP-based Driving and Servo Control Strategies for Electromagnetic-levitation Platform

指導教授 : 李政道
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在磁浮系統中,由於電磁場中氣隙、電流與電磁力之間的非線性關係,導致系統具有高度非線性且不穩定的特性。因此本論文先建立電磁鐵等效電路模型,再根據牛頓第二運動定律建立系統動態模型,以設計出多樣性主動控制策略來維持系統的穩定性。首先將針對磁浮驅動與控制系統利用遞迴步階(Backstepping)方式進行控制器設計,再進一步結合滑動模式控制(Sliding Mode Control, SMC)以使控制系統擁有更佳之強健性。此外,為簡化控制系統架構並進一步增加系統響應,在第四章中將再設計一具脈波寬度調變(Pulse Width Modulation, PWM)之電流控制器,除系統穩定性可確保之外,更可優化暫態響應以及加速誤差收斂時間。最後更利用數值模擬與數位訊號處理器實驗平台,驗證所設計之電磁懸浮式定位系統之可行性。

並列摘要


The nonlinear relationship among the air gap, current and magnetic forces will result in highly nonlinear and unstable characteristics in maglev system. In this thesis, the electromagnetic equivalent circuit model is established, and then the dynamic model will be derived by using Newton's second law of motion. Based on the dynamic model, control strategies are designed to keep the maglev system stable. In the control systems, a backstepping control (BSC) is firstly proposed due to the systematic design step. Furthermore, the backstepping design steps are used to design a sliding mode control (SMC), it will make the maglev control system has the better control performance. To simplify the control scheme and increase the system response, the installation of a hardware-based pulse-width-modulation type current controller is designed in the fourth chapter. Besides, the stability of the system can be ensured and the better transient response and accelerated error convergence time can be seen. Finally, the effectiveness and robustness of the proposed control strategies in this master thesis are verified by numerical simulations and digital-signal-processor(DSP)-based experimental results.

參考文獻


[1] Z. Long, G. He, and S. Xue, “Study of EDS & EMS hybrid suspension system with permanent-magnet halbach array,” IEEE ransactions on Magnetics, vol. 47, no. 12, pp. 4717–4724 December 2011.
[2] L. Zhu and C. R. Knospe, “Modeling of nonlaminated electromagnetic suspension systems,” IEEE Transactions on Magnetics, vol. 15, no. 1, pp. 59–69, February 2010.
[3] T. Schuhmann, W. Hofmann and R. Werner, “Improving operational performance of active magnetic bearings using kalman filter and state feedback control,” IEEE Transactions on Magnetics, vol. 59, no. 2, pp. 821–829, February 2012.
[4] K. Matsuda, Y. Kanemitsu, and S. Kijimoto, “Optimal number of stator poles for compact active radial magnetic bearings,” IEEE Transactions on Magnetics, vol. 43, no. 8, pp. 3420–3426, August 2007.
[5] L. L. Tian, X. P. Ai, and Y. Q. Tian, “Analytical model of magnetic force for axial stack permanent magnetic bearings,” IEEE Transactions on Magnetics, vol. pp, no. 99, pp. 1–10.

被引用紀錄


吳明叡(2014)。磁浮系統之驅動控制系統設計〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2014.00232

延伸閱讀