透過您的圖書館登入
IP:18.117.76.7
  • 學位論文

電動車通訊協定規劃與模擬

The Configuration and Simulation of the Communication Protocols for Electric Vehicles

指導教授 : 賴大溪
共同指導教授 : 褚文和(Wen-Hou Chu)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


自從工業革命後,能源大量被開發利用,雖然提升人類物質文明,但也產生廢氣造成空氣污染及溫室效應;為減少排碳污染,車輛能源以使用電能較能符合環保要求。因此,若以環保減碳考量,當以電動車較佳。電動車融合了許多的電子控制系統及電子配備,必然導致整車配線增長且複雜、線路上的功率損耗加大、故障維修難度增加。車輛使用控制器區域網路(CAN)之通訊技術,要求大批的數據訊息能在不同的電子單元中共享,控制系統中大量的控制訊息也需要即時交換,解決線束複雜性及即時控制等需求。 本文參照SAE J1939 通訊協定,規劃出應用層的訊息優先權、來源地址、群組位、訊息循環率和資料訊框編排等要素,完成29位元應用層訊息ID。再使用Vector商用車輛網路開發工具CANoe 6.1英文版,於開發工作環境內建構虛擬節點(Node),透過模擬實體網路通訊的方式,對本規劃之應用層與節點進行網路負載模擬測分析。當模擬馬達最高負載轉速,電瓶電壓維持在148V,方向盤轉角保持有輸出訊號,執行網路流量負載模擬分析,其模擬結果為安全負載狀態。另外,採用Philips LPC2119單晶片製作出電動車CAN Bus節點之11位元轉29位元(bit)閘道器(Gateway),未來將可用於實體平台網路通訊測試,達成分散式控制系統所需之資訊分享,減少系統配線和輕量化通訊網路系統,可縮短研發時間,並實現應用層網路系統及建構出符合通訊協定(Protocol)之電動車網路。

關鍵字

電動車 CAN SAE J1939 通訊協定 應用層

並列摘要


Since the Industrial Revolution, the energy resources have been exploited vastly. It has propelled the progress of human civilization; on the other hand, it causes the air pollution and green house effect. In order to reduce the carbon emissions, it meets the critical needs for environmental protection by using the electrical energy. Thus, if considering reducing the carbon to be the biggest concern for environmental protection, it is the better to use the electric vehicles. Under the influence of worldwide trend to develop and use the electric vehicles, these vehicles consist of many electronic control systems. With a great deal of application on the electronic devices, it would lead to an increase in the length of vehicle body wiring layout, and in the extent of wiring complexity. In the meanwhile, it also enlarges the power dissipation and results in troubleshooting difficulties. The vehicles applied the Controller Area Network (CAN) to share and exchange the data message in real time through different electronic units. The study referred to protocol SAE J1939 and followed its application layers arguments. Thereupon, we sort out several essential factors such as the priority, source address, group function value, transmission repetition rate, data frame layout, etc. Considering those factors above, we accomplished the 29 bits application layers message list. Afterward using the CANoe 6.1 English version, a tool of developing ECU network for vehicles, we constructed the virtual node and ran the analyses of simulation and loading through the physical layers simulation. With the simulation that keeps the motor at the maximum load speed, maintains 148V in the battery, and continues to output the signals of steering wheel angle, the result showed that it didn’t reach the full loading condition. In addition, for the electric vehicles we has designed the CAN Bus node and produced the technique for 11 bits-to-29 bits gateway. We could apply those to the physical layers network communication and fulfill the need of planning the topology in accord with the communication protocols.

並列關鍵字

Electric vehicles CAN SAE J1939 Protocol application layer

參考文獻


[34]洪芳州,“各類電池使用指南”,pp. 34~60,全華科技股份有限公司,民國八十三年。
[6] Y. Gao, M. Ehsani, “ Systematic design of fuel cell powered hybrid vehicle drive train,” Society of Automotive Engineers, pp. 1~10,2001-01-2532.
[7]C. Liang, W. Oingnian, “ Energy management strategy an parametric design for fuel cell family sedan,” SAE , No. 2003-01-1147, 2003.
[8]P. Pei, M. Ouyang, Q. Lu, H. Huang and X. Li, “ Testing of an automotive fuel cell system,” International Journal of Hydrogen Energy, Vol. 29, pp. 1001-1007, 2004.
[9]G. Pede,A. lacobazzi, S. Passerini,A. Bobbio,G. Botto,“ FC vehicle hybridization: an affordable solution for an energy-efficient FC powered drive train ,” Journal of Power Sources, Vol. 125, pp. 280-291, 2004.

延伸閱讀