透過您的圖書館登入
IP:3.139.233.43
  • 學位論文

以一階段電鍍法製備Cu(In,Ga)Se2薄膜太陽能電池之吸收層

Synthesis of Cu(In,Ga)Se2 Thin Film for Solar Cell Using Single-Step Electrodeposition Technique

指導教授 : 謝淑惠
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


銅銦鎵硒[Cu(InxGa1-x)Se2, CIGS]為薄膜型的太陽能電池吸收層,其吸收層屬於P型半導體材料,能隙介於1.04 eV~1.68 eV之間,為具有高光吸收率與高光電轉換效率的半導體太陽能材料,現今太陽能薄膜製程可分為真空製程以及非真空製程兩類,非真空製程之電沉積技術可大約分為單原子層堆疊、雙原子層堆疊和一階段電沉積。 本研究以非真空製程之一階段電沉積法製備CIGS薄膜,主要為減少電沉積製程之步驟,以鉑(Pt)作為輔助電極,藉由改變鍍浴的pH值、沉積電壓、沉積時間以及攪拌速度,在FTO基材上同時沉積銅、銦、鎵、硒四種元素,形成CIGS薄膜太陽能吸收層,再由不同的熱處理溫度與熱處理時間改善薄膜結構,得最佳成份比和黃銅礦相結構,以掃描式電子顯微鏡(SEM)得知其微觀結構、能量散射光譜儀(EDS)觀察薄膜之元素組成百分比和X光繞射光譜儀(XRD)分析相結構。 實驗結果顯示沉積吸收層,電鍍浴pH值會影響各元素的還原電位,使沉積還原的組成比例更難以掌控,當銅、銦、鎵、硒的化合物濃度配比為1:6:10:1的析鍍條件下,銦與鎵含量隨著電壓的增加而增加,在沉積電壓為-1.4 V所形成之CIGS鍍層的銦和鎵含量較為充足,再經由原化合物的濃度配比1:6:10:1調整為1.4:6:10:1,得到組成比例較為理想的CIGS鍍層;沉積時間為3分鐘,鍍浴中攪拌速度為150 rpm時,所得到的CIGS吸收層膜厚為2 μm與研究文獻所提相符合;而CIGS鍍層在氬氣氛中熱處理,當退火溫度達550℃並持溫30分鐘可得到較佳的黃銅礦相結構。

並列摘要


In this work single-step electrodeposition method was used to deposit four elements simultaneously for the synthesis of Cu(In,Ga)Se2 (CIGS) thin film for solar cell. The experimental parameters consisted of pH value, main metal ion concentration ratio, applied voltage, deposition time, annealing temperature and time. The experiments are carried out repeatedly and an X-ray diffractometer (XRD) and a scanning electron microscope (SEM) were used to analyze the phases and observe the microstructure of deposited film. The results showed that the Cu(In,Ga)Se2 phase was deposited 1.5-2 μm thickness with a preferred plane (112). The optimum parameters for the synthesis an ideal composition ratio of CIGS were pH value of 3.0, applied voltage of -1.4 V, CuCl2 concentration of 7 mM, InCl3 concentration of 30 mM, GaCl3 concentration of 50 mM, H2SeO3 concentration of 5 mM, , deposition time of 3 min. and annealing temperature of 550℃, 30 min.

參考文獻


[40] 韓弼任,2010,“以電鍍法製備CIGS太陽能電池之吸收層”,國立虎尾科技大學材料科學與綠色能源工程研究所碩士論文。
[1] L. Tsakalakos, 2008, “Nanostructures for photovoltaics”, Materials Science and Engineering, R 62, pp. 175–189.
[4] D.M. Chapin, C.S., Fuller, G.S. Pearson, 1954, “A new silicon p–n junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, Vol. 25, pp.676-677.
[5] J. Zhao, A. Wang, M.A. Green, F. Ferrazza, 1998, ”19.8% efficient honeycomb textured multicrystalline and 24.4% monocrystalline silicon solar cells” Appl. Phys. Lett, 73, pp.1991.
[6] C. Berge, M. Zhu, W. Brendle, M. B. Schubert, J. H. Werner, 2006, ” 150-mm layer transfer for monocrystalline silicon solar cells”, Solar Energy Materials & Solar Cells, 90, pp. 3102–3107.

延伸閱讀