透過您的圖書館登入
IP:18.189.13.48
  • 學位論文

利用電漿化學氣相沉積二氧化鈦光觸媒薄膜分解水中環境賀爾蒙與細菌

Titanium Dioxide Photocatalyst Films Deposited by PECVD to Decompose Environmental Hormone and Bacteria in Water

指導教授 : 莊賦祥
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文研究利用電漿化學氣相沉積法(Plasma Enhance Chemial Vapor Deposition, PECVD)製備二氧化鈦光觸媒薄膜,使用氬氣(Ar)作為載氣,將鈦來源(四異丙烷鈦,Titanium(IV) isopropoxide, TTIP)輸送至混合槽並與氧氣(O2)做混合產生反應再導入腔體內,沉積於玻璃與不鏽鋼基板上並藉由調變電漿功率來探討不同電漿功率對薄膜品質的影響,以此觸媒做光催化降解亞甲基藍與甲基橙反應來研究其觸媒特性。藉由X光繞射儀(XRD)、紫外光-可見光光譜儀(UV-VIS Spectrum)量測結構分析薄膜特性及降解後的亞甲基藍與甲基橙光吸收率。 研究結果顯示,不鏽鋼基板在製程溫度25 ℃,製程壓力150 mTorr,電漿功率300 W,TTIP流量100 Sccm,氧氣流量15 Sccm,退火溫度500 ℃時間30分鐘下,有較佳的銳鈦礦(Anatase)結晶相峰值及光催化降解效率,XRD圖中可分別在A(101),(104),(200),(105)位置發現銳鈦礦峰值,在高功率UV LED Light(波長395 nm, 電壓50.2 v, 電流1.48 mA)均勻照射下,沉積在不銹剛基板上的二氧化鈦薄膜於1小時內降解亞甲基藍的降解率可達62.8%,9小時內降解甲基橙的降解率可達67.1%。 另外,分解水中環境賀爾蒙苯酚及抑制大腸桿菌生長實驗部份,因一般工業污水中含有有機污染物-苯酚,用一般傳統處理法難以將之去除,本研究藉由調配不同濃度從5 ppm、10 ppm到15 ppm的苯酚溶液,利用二氧化鈦光觸媒薄膜光催化降解苯酚化合物,在催化時間25小時後,最終成功將苯酚礦化成二氧化碳和水。 而大腸桿菌部份使用BCRC 11634菌株做測試,培養30 ml LB液態培養液置於37 ℃培養烤箱培養16小時後取3 ml做二氧化鈦光觸媒殺菌實驗,結果顯示在高功率UV LED Light(波長395 nm, 電壓47.7 v, 電流1.14 mA)照射下,可看出有二氧化鈦經紫外光照射後觸發光催化反應,經計數後E.Coli明顯減少許多,成功抑制大腸桿菌的生長。

並列摘要


This paper studies the plasma enhanced chemical vapor deposition (PECVD) Preparation of titanium dioxide photocatalyst film using argon (Ar) as the carrier gas, the source of titanium (4-isopropyl titanium, Titanium (IV) isopropoxide, TTIP) delivered to the mixinggroove and do mixed with oxygen (O2) reacts then into the body cavity, and deposited on glass and stainless steel substrate and by modulating the plasma power to explore the influence of the type of plasma power on the film quality, this catalyst Photocatalyticdegradation of methylene blue and methyl orange reaction to study the catalytic properties. UV - visible spectrometer (UV-Vis Spectrum) measurement structure by X-ray diffraction (XRD) analysis of film properties and the degradation of methylene blue and methyl orange light absorption rate. The results showed that the stainless steel substrate in a process temperature of 25 ° C, the process pressure of 150 mTorr, plasma power of 300 W, the TTIP flow of 100 sccm, oxygen flow rate 15 sccm, annealing temperature of 500 ℃ under 30 minutes, preferably anatase (anatase) crystalline phase peak and the efficiency of the photocatalytic degradation XRD FIG respectively in A (101) (104) (200) (105) position anatase peak in the high-power UV LED light (wavelength 395 nmvoltage 50.2 v current of 1.48 mA), uniform light, titanium dioxide thin films deposited on stainless steel substrate degradation rate of degradation of methylene blue in 1 hour up to 62.8%, the degradation rate of up to 9 hours degradation of methyl orange67.1%. In addition, the decomposition of water environmental hormone phenol and inhibit the growth of E. coli experimental part, due to the general industrial wastewater containing organic pollutants - phenol, traditional processing method is difficult to be removed, the study by to deploy different concentrations from 5ppm, 10 ppm to 15 ppm of phenol solution, titanium dioxide photocatalyst film photocatalytic degradation of phenol compounds in the catalytic time 25 hours later, the ultimate success of the phenol mineralization into carbon dioxide and water. E. coli part of the BCRC 11634 strain test, culture placed in 30 ml LB liquid culture medium and cultured at 37 ° C oven take 3 ml culture 16 hours after the titanium dioxide photocatalyst antibacterial experiments, the results show the high power UV LED Light (wavelength 395 nmvoltage of 47.7 V, current of 1.14 mA), we can see uniform irradiation the titania catalyst irradiated with UV light photocatalytic reaction is triggered by the count after E. coli significantly reduce the number of successfully inhibited the growth of E. coli.

並列關鍵字

PECVD TiO2 methylene blue methyl orange E. coli phenol Photocatalysis

參考文獻


[1]蘇俊鐘 ”光觸媒(Photocatalyst)”, NCHC奈米科學研究小組, 2003.
[2]高濂, 鄭珊, 張青紅著 “奈米光觸媒”, 五南圖書出版股份有限公司, 2004.
[3]Harada H., Ueda T. Chem. Phys. Lett., 106, 229, 1984.
[4]Frank S. N., Bard A. J., J. phys. Chem., 81, pp.1484-1488, 1977.
[5]Frank S. N., Bard A. J. “Photochemistry of colloidal semiconducting iron oxide polymorphs”, J. Phys. Chem, , 91, pp.5076-5083, 1987.

延伸閱讀