透過您的圖書館登入
IP:3.148.229.54
  • 學位論文

光纖雷射於304不銹鋼表面形成RGB色彩之參數最佳化研究

Study on Fiber Laser Color-Marking on 304 Stainless Steel Surface to Form Best RGB Parameters

指導教授 : 許坤明
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


因工業技術發展迅速,市場對於不銹鋼產品的要求越來越多元,除了良好機械性質與化學特性外,還需優異或特殊的外觀形貌,以提升產品價值。不銹鋼本身加工容易與抗蝕性強等性質,已廣泛使用在各行業中,而國內對於不銹鋼色彩的研究,通常使用陽極處理或印刷的方式增添色彩,但缺點是會有製程複雜與色彩易剝落等問題。 本研究採用光纖雷射技術賦予不銹鋼彩雕色彩,通過雷射參數變動達到不銹鋼彩雕的製程,目標是製出紅、綠與藍三原色,用光譜儀分析得出各目標波長,紅光波長為624.63nm、綠色波長為533.31nm與藍色則是在波長438.18nm。 本論文使用田口望目及望大特性於雷射加工參數研究,以製備彩雕顏色最佳化參數,並用光譜儀分析紅、綠與藍各L1~L9不銹鋼氧化層反射光波長,得出波長數據之光譜圖進行色彩確認,紅色彩雕運用田口望目特性得出掃描速度預測值(F)為139mm/sec波長值為625.97 nm,相較田口L1~L9實驗更接近目標值624.63nm。綠色彩雕運用田口望目特性得出雷射頻率預測值(F)為755.17kHz,光譜分析顯示波長數值533.31nm與目標值符合。藍色雷射彩雕將原定研究波長位置改為波強度,採用田口望大特性,分析顯示波確實有提高為655μw/nm,但仍與目標值很大的差異。 最後,不銹鋼彩雕表層形貌與成分組成,將由掃描式電子顯微鏡(SEM)與能量散佈分析儀(EDS)進行分析。

並列摘要


Due to the rapid development of industrial technology, the demands for stainless steel product diversity are increasing. In addition to good mechanical and chemical properties, it also requires excellent or specialized appearance to enhance product value. Stainless steel is easily machined and highly corrosion resistant; it has been commonly used in various industries. The domestic study shows anodization or printing are the primarly methods for coloring which can be easily peeled off. This study will use fiber laser color-marking technique, through laser parameters to color stainless steel. The goal is to produce three primary colors - red, green and blue and use spectroscope to analyze the target wavelengths. The red wavelength is 624.63nm, the green wavelength is 533.31nm and the blue wavelength is 438.18nm.This study applied Taguchi’s Nominal-The-Best and Larger-The- Better to find the best combine parameters and uses spectroscope to analyze red, green and blue L1~ L9 stainless steel oxide layer’s reflective light wavelength for wavelength data and spectrogram to confirm color; the red color uses Taguchi’s Nominal-The-Best and scan-speed predictive value (F) is 139mm/sec and wavelength is 625.97nm, compared to Taguchi’s L1~L9 test, it is closer to the target value 624.63nm. The green color uses Taguchi’s Nominal- The- Best and found laser frequency predictive value (F) is 755.17 kHz, the Spectral analysis shows wavelength is 533.31nm which meets the target value. The blue laser coloring changes the original study of the wavelength position to wave intensity, uses Taguchi’s Larger-The-Better and the Spectral analysis clearly states wavelength has increased to 655μw/nm but there is still a great difference with the target value. Lastly, the Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectrometer (EDS) are used to analyze stainless steel’s color surface and composition.

參考文獻


[24] 王志文,2011,”Nd:YAG雷射對不銹鋼鑽孔時重鑄層特性之探討”,屏東科技大學碩士論文。
[3] 李函霓,2012,”鍍膜轉速對AISI304不銹鋼電弧披覆TiN/CrN多層膜特性之影響”,大同大學碩士論文。
[11] E I Ageev, Ya M Andreeva, Yu Yu Karlagina, Yu R Kolobov, S S Manokhin, G V Odintsova, A A Slobodov and V P Veiko, 2017, "Composition analysis of oxide films formed on titanium surface under pulsed laser action by method of chemical thermodynamics", Laser Physics, Volume 27, Number 4, February.
[12] V. Veiko, G. Odintsova, E. Vlasova, Ya. Andreeva, A. Krivonosov, E. Ageev, E. Gorbunova, 2017, "Laser coloration of titanium films: New development for jewelry and decoration", Optics and Laser Technology, 93 , pp. 9-13, August.
[13] H. Y. Zheng, G. C. Lim, X. C. Wang, and J. L. Tan, 2002, "Process study for laser-induced surface coloration", Journal of Laser Applications , 14, pp. 215, May.

延伸閱讀