透過您的圖書館登入
IP:216.73.216.250
  • 學位論文

應用支援向量機與製程統計特徵於線上偵測製程異常之研究

On-line control chart pattern recognize suing support vector machines and statistical features

指導教授 : 顧瑞祥
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


統計製程管制 (statistical process control) 是廣泛被工業界採用在製程監控的重要方法,其主要是監控製程是否存在可歸屬原因 (assignable causes) 所導致之變異,以提早採取製程改善之行動,避免增加產品額外的生產成本。而在統計製程管制方法中管制圖 (control chart) 是最常被應用之重要工具,用來決定系統狀態並偵測製程中可能隨時發生的異常情況,這是屬於一種分類問題;近年來支援向量機 (support vector machine) 被廣泛的應用在分類問題上,並有許多研究指出具有良好的效益,因此本研究擬應用支援向量機做為線上偵測製程之監控系統。在過去的製程辨識文獻大多應用原始資料數據做為訓練樣本,在本研究將結合製程統計特徵做為訓練樣本,且證實結合製程統計特徵能有效的提昇管制圖辨識之正確率。除此之外,本研究將和過去製程監控文獻中大多學者使用之類神經網路(artificial neural network) 做比較,並從實驗的結果中得知支援向量機具有較好的正確率。

並列摘要


Statistical process control is an important method for control process in industry. It can detect assignable cause during the process control which may occur and provide help to improve process and reduce unnecessary product cost. Hence, control chart is an important tool at statistical process control. Control charts can detect abnormal status during the process control which may occur at any time. Essentially, the judgement of the process states can be seen as a classification problem in artificial intelligence. Recently, support vector machine (SVM) is generally used in classification pattern, and a lot of researches point out that SVMs have excellent performances. In the past, many literatures concerned control chart pattern recognition (CCPR) used original data as the test samples. In this research, original data and statistical feather data are used to be the test samples. Using simulation, it is demonstrated that integrating statistical feather data in the test samples can improve recognition ability. Many researches in the literature have used neural network to recognize patterns. Hence in this research the performances of SVM on control chart pattern recognition will be compared with neural network, based on the result of the experiment, the performances of support vector machines are batter than neural network in on-line CCPR.

參考文獻


[1]王仁達 (1988),應用類神經網路偵測製程平均值變化:設計策略之研究,元智大學,碩士論文。
[2]王駿發、林博川、王家慶和宋豪靜 (2005),「以支援向量機為基礎之新穎語者切換偵測演算法」,計算語言學通訊,第十六卷。
[3]王景南 (2003),多類支援向量機,元智大學資訊管理研究所,碩士論文。
[4]吳聰宏 (1994),類神經網路應用在品質管制中相關性製程數據之管制,元智大學工業工程研究所,碩士論文。
[5]呂奇傑 (2005),「支援向量機於資料探勘中分類模型之應用」,產業管理創新研討會,頁687-693。

被引用紀錄


張毓珊(2009)。發展處理類別不平衡問題之資料探勘模式〔碩士論文,朝陽科技大學〕。華藝線上圖書館。https://www.airitilibrary.com/Article/Detail?DocID=U0078-2611201410125921

延伸閱讀