透過您的圖書館登入
IP:3.145.81.212
  • 學位論文

金奈米粒子鑲埋於染料敏化太陽能電池光電極之研究

Study on the Gold Nanoparticles Inlaid in the Electrode of Dye-sensitized Solar Cells

指導教授 : 閔庭輝
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究使用電化學法(Electrochemical synthesis)製備金奈米粒子(gold nanoparticles),並鑲埋於染料敏化太陽能電池之光電極。其製備之金奈米粒子平均粒徑為50nm,吸收波長為533nm。接著利用刮刀塗佈法製備TiO2/Au複合薄膜於FTO導電玻璃基板上作為工作電極。接著將TiO2/Au複合薄膜經過機械壓縮處理加壓279kg/cm2後退火在450℃下30分鐘,其工作電極在50℃下浸泡N3染料3小時。而背電極為鉑(Pt)沉積於ITO導電玻璃基板上。探討含量分別為100, 200, 300, 400, 500 μL的金奈米粒子對染料敏化太陽能電池的影響。研究結果指出最佳的添加量其光電轉換效率為6.06%,比未添加金奈米粒子的光電轉換效率高出12%。金奈米粒子會使二氧化鈦電極之表面產生蕭特基能障(Schoky barrier)。 最佳含量金奈米粒子與二氧化鈦複合結構上塗佈不同厚度散射層,藉以增強光在二氧化鈦薄膜的傳輸路徑,增加染料對光子的吸收,從而提高光電轉換效率。散射層包含了300~400nm的TiO2奈米粒子。在散射層厚度為3.3μm有最佳的光電轉換效率7.10%(開路電壓(VOC)為0.70V、短路電流(JSC)為16.62 mA/cm2、填充因子(F.F.)為0.6)比未加散射層之TiO2/Au複合薄膜高出17%的光電轉換效率。

並列摘要


In this study, we prepared gold nanoparticles by electrochemical synthesis, and applied to the photoelectrode of dye-sensitized solar cells. The analyses of Transmission Electron Microscopy (TEM) show that the average diameter of gold nanoparticles is 50 nm. The results of ultraviolet-visible absorption spectra (UV-Vis) show that the absorption wavelength is about 533 nm for gold nanoparticles. As explore of adding TiO2 and gold nanoparticles the capacity of 100, 200, 300, 400, 500 μL respectively. The layer of TiO2/Au composite structures was fabricated by scraper method on the FTO-glass substrate of the working electrode, and then sintered in a high-temperature furnace. The working electrode with a TiO2/Au thin film was immersed in the solution of N3 dye for 3 hours in 50℃. Moreover, a thin film of platinum on was deposited on the ITO-glass substrate of the counter electrode. First, we examined the effects of the gold nanoparticles inlaid TiO2 photoelectrode, on the power conversion efficiency η of the DSSC. Most importantly, this study shows that the power conversion efficiency η of the DSSC with a film of TiO2/Au on the working electrode (6.06%) exceeds that of the conventional DSSC (5.42%) due to a Schottky barrier, which is probably created in the metal-doped TiO2. Then we prepared different thickness light scattering layers on TiO2/Au composite photoelectrode . The light scattering layers consist of 300~400nm TiO2 particles.The best photoconversion efficiency of DSSC was 7.1% (open circuit voltage (Voc)= 0.70 V, short-circuit photocurrent density (Jsc)=16.62 mA/cm2, fill factor (FF)=0.6) with the thickness of 3.3 μm, which was 17% enhancement compared to the TiO2/Au film without scattering-layered.

參考文獻


[3] J. J. Mock1, M. Barbic1, D. R. Smith1, D. A. Schultz1 and S. Schultz1, 2002, “Shape effects in plasmon resonance of individual colloidal silver nanoparticles”, Journal of Chemical Physics, pp. 6755-6759.
[4] M. Jakob and H.Levanon, 2003, “Charge distribution between UV-Irradiated TiO2 and gold nanoparticles:determination of shift in the fermi Level”, Nano Letters, pp. 353-358.
[5] W. P. Halperin, 1986, “Quantum Size Effects in Metal Particles”, Reviews of Modern Physics, Vol 58, pp. 533.
[9] Shuwen Zeng, Ken-Tye Yong, Indrajit Roy, Xuan-Quyen Dinh, Xia Yu and Feng Luan, 2011, “A Review on Functionalized Gold Nanoparticles,” Plasmonics, pp. 491–506.
[10] Vivek Sharmaa, Kyoungweon Parka and Mohan Srinivasarao, 2009, “Colloidal dispersion of gold nanorods: Historical background, optical properties”, Material Science and Engineering Reports, pp. 1–38.

被引用紀錄


施力綺(2015)。氧化鋅複合式奈米結構應用於可撓式染料敏化太陽能電池〔碩士論文,國立虎尾科技大學〕。華藝線上圖書館。https://doi.org/10.6827/NFU.2015.00142

延伸閱讀