透過您的圖書館登入
IP:18.226.96.61
  • 學位論文

雙軸向超音波金屬熔接之加工機設計及其加工參數研究

The Design of Ultrasonic Metal Welding with Dual Axes and Its Processing Parameters

指導教授 : 許坤明
共同指導教授 : 石煥讓(Hung-Rung Shih)
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本論文主要針對雙軸向超音波金屬熔接加工進行分析探討。一般市面上的超音波金屬熔接係單軸向,為單一軸向的移動、摩擦、熔接,本研究則採用雙軸向,由水平與垂直方向聲波焊頭互相震盪讓兩工件除原本的水平方向移動摩擦另外增加垂直方向的振動摩擦,來達到更加良好之熔接效果。 超音波金屬熔接結果中,重點在於聲波焊頭,聲波焊頭的良莠影響超音波熔接加工之效果,因此首先設計可用的聲波焊頭,本研究設計雙軸向之焊頭,分別為水平與垂直方向。設計過程中以ANSYS有限元素分析軟體來模擬聲波焊頭模態分析,設計尺寸以田口法之望目特性尋找符合設計之目標值,找出適合超音波產生器頻率之聲波焊頭。之後以頻率量測儀對最佳化之聲波焊頭進行頻率量測,並進行模擬比對,結果顯示模擬值和實際量測值相似,皆符合音波產生器之頻率,對於超音波加工上能節省大部分測試及修正的時間。 之後以這兩隻聲波焊頭進行超音波金屬熔接實驗。實驗完成後,使用電子微探儀(EMPA)觀察接合斷面處之成分分析。並使用拉伸試驗機配合田口法,求得最佳製程參數,且在變異數分析中,求得影響力最大之因子及貢獻率,以提升加工之品質。

並列摘要


This study primarily analyzes and investigates two-axis ultrasonic metal welding processing. Typically, ultrasonic metal welding employs a single axis, which involves uniaxial movement, friction, and welding. This study adopts two axes, which allows two ultrasonic horns to oscillate horizontally and vertically, enabling vibrational friction in the vertical direction in addition to the original horizontal direction, thereby achieving better welding results. Ultrasonic horns are critical in ultrasonic metal welding, because the quality of these horns influences the effectiveness of ultrasonic welding processing. Therefore, a usable ultrasonic horn must be designed. In this study, we designed a two-axis ultrasonic horn, which works both horizontally and vertically. During the design process, ANSYS finite element analysis software was used to simulate the analysis of ultrasonic horn model. Regarding the design dimensions, Taguchi’s nominal-the-best characteristic was applied to determine target values corresponding to the design and identify an ultrasonic horn applicable for the frequency of the ultrasonic generator. Subsequently, the frequencies of the optimized ultrasonic horns were measured using a frequency measurement instrument, followed by simulations and comparisons. The results show that the simulation values approximate the measured values and both values correspond to the frequency of the ultrasonic generator. In addition, considerable amount of time required for the testing and modification of ultrasonic processing can be reduced. The two ultrasonic horns were employed in a subsequent ultrasonic metal welding experiment. After completing the experiment, a component analysis was performed to observe the contact area by using an electron probe micro analyzer (EMPA). A tensile testing machine and the Taguchi method were used to calculate optimal parameters for manufacturing processes. Furthermore, the most influential factors and contribution rates were achieved using the analysis of variance to improve the quality of processing.

參考文獻


[22] 蘇崑熙,2003,”使用ANSYS之機械結構動態分析”,中原大學機械工程系碩士學位論文年。
[23] 李岳勳,2011,”不同製程ITO導電薄膜之殘留應力分析”,國立成功大學土木工程學系碩士班論文。
[1] Mei-Hsiu Chen, 2010, "Understanding world metals prices—Returns, volatility and diversification", Resources Policy, Volume 35, Issue 3,Pages 127–140.
[2] Y.K. Oh, 2002, "A study of the effect of ultrasonic vibrations on phase-change heat transfer", International Journal of Heat and Mass Transfer 45, pp4631–4641.
[5] S. Elangovan, S. Semeer, K. Prakasan ,2009, "Temperature and stress distribution in ultrasonic metal welding-An FEA-based study", Journal of Materials Processing Technology, Volume 209, Issue 3, Pages 1143–1150

延伸閱讀