透過您的圖書館登入
IP:3.146.105.194
  • 學位論文

發展離心平台上快速血漿分離及混和技術

Development of Centrifugal Platform for Rapid Separation and Mixing of Blood Plasma

指導教授 : 郭如男
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


本研究目的是在微流體離心平台上發展快速血漿分離及混合技術,設計一組微流體系統包括血漿分離模組、微閥門及血漿混合模組並加以整合。首先將血液注入到血漿分離模組的注入槽,當光碟旋轉至第一段轉速時進行血漿分離,分離完的血漿與DI water或試劑使用第二段轉速突破微閥門至血漿混合模組加以混合以利後續的疾病因子檢測及相關的研究。本研究先使用有限元素分析軟體COMSOL來模擬血漿分離及血漿混合的流場分析,模擬出來的結果再經由實驗驗證其正確性。晶片製作是採用微機電製程,先製造出SU-8母模,再利用高分子材料PDMS使用澆注的方式進行翻模,之後將晶片利用氧電漿的方式接合在光碟片上即完成微流體光碟片。實驗顯示血漿分離模組可在光碟2000 rpm,血球容積比6 %情況在5至6秒達到95 %分離效率;所設計的血漿混合模組,以Type 1的混合效率最高,在轉速2200 rpm時5秒可達到96.4 %的混合效率。

關鍵字

離心平台 血漿分離 混合 微流體 COMSOL PDMS

並列摘要


This paper presents a new lab-on-CD microstructure capable of directly separating plasma from the whole blood into different reservoirs and performing plasma mixing functions. We propose a CD microfluidic platform, including a microchannel network consisting of a plasma separation microchannel network and a mixer microchannel network. As the disk rotates, the centrifugal force causes the separation of blood cells and plasma because of their different densities. The blood cells enter a collection chamber, while the plasma flows to the downstream mixer microchannel network. Numerical simulations are performed to investigate the flow characteristics and mixing performance of three CD microfluidic mixers. The results show that given an appropriate specification of the microchannel geometry and a CD rotation speed of 2000 rpm, 95% separation efficiency is achieved within 5-6 s for diluted blood with a hematocrit of 6%, and a mixing efficiency of more than 96.4% can be obtained within 5 s at an angular frequency of 2200 rpm.

參考文獻


[40] 邱繼鋒,“血液在表面張力驅動微流道內之分析”,國立台灣大學工學院應用力學研究所,碩士論文,2007。
[1] B. S. Harald, “Flow cytometer for measurement of the light scattering of viral and other submicroscope particles,” Cytometry Part A, vol. 57A, pp. 94-99, 2004.
[2] M. A. Clain, C. T. Culbertson, S. C. Jacobson, and J. M. Ramsey, “Flow Cytometer of Escherichia coli on Microfluidic Devices,” Analytical Chemistry, vol. 73, pp. 5334-5338, 2001.
[3] A. Wolff, I. R. P. Nielsen, U. D. Larsen, P. Friis, G. Goranovic, C. R. Poulsen, J. P. Kutter, P. Kutter, and P. Telleman, ”Integrating advanced functionality in a micro fabricated high-throughput fluorescent-activated cell sorter,” Lab on a Chip, vol. 3, pp. 22-27, 2003.
[4] P. S. Dittrich and P. Schwille, “An Integrated Microfluidic System for Reaction, High-Sensitivity Detection, and Sorting Fluorescent Cells and Particles,” Analytical Chemistry, vol. 75, pp. 5767-5774, 2003.

延伸閱讀