本研究是利用水熱法以及刮刀法在 ITO/PEN 基板上製作出氧化鋅工作電極運用 在染料敏化太陽能電池;水熱法成長氧化鋅奈米柱,刮刀法製備氧化鋅奈米薄膜。在本研究中,奈米柱為電子的傳輸路徑,減少電子的再結合,奈米薄膜當作是吸光層,不僅能改善染料分子的吸收,也可以增強入射光的吸收。兩種結構結合形成氧化鋅奈米柱與奈米薄膜雙層結構之工作電極。 透過 FE-SEM 分析,當奈米薄膜厚度約為 35 微米時轉換效率可達 2.61 %。經由實驗發現,當奈米薄膜厚度在 30 微米,奈米柱長度 4.5 微米時的雙層結構工作電極,轉換效率提升至 3.05 %。此外透過 IPCE 分析發現光子轉換效率也從 44.6 % 提升至53.4 %。 最後由 EIS 分析儀分析顯示,當工作電極厚度在 35 微米時,RK 的電阻值為最 小,因此轉換效率最高;此外,雙層結構電極中電子的壽命週期較奈米薄膜電極大,表示電子傳輸行為在雙層結構上較奈米薄膜佳,因此在太陽能電池的效率提升上也有比較大的發展。
In this study, the ZnO working electrode was prepared on ITO/PEN substrates by hydrothermal method and doctor-blade method in dye sensitized solar cell; the ZnO nano-rod was fabricated by hydrothermal method, and the ZnO nano-film was prepared by doctor blade method. The main purpose of the ZnO nano-rod is to collect photogenerated electrons and reduce the charge recombination, while the polydisperse ZnO nano-film is used as a light-scattering layer not only to improve the adsorption of the dye molecules, but also to enhance the absorption of the illumination light. The ZnO (nano rods/nano-film) bilayer structure was used as the working electrode of dye sensitized solar cell. In the SEM analysis, when the nano-film with thickness of 35 μm, the cell efficiency will achieve 2.61% in DSSC. It was found that the the nano-film with thickness of 30 μm, and the the nano-rod with length of 4.5 μm, the best cell efficiency will achieve 3.05% for the ZnO bilayer structure DSSC. In addition, the incident photon-to-current conversion efficiency (IPCE) from 44.6% increases to 53.4%. Electrochemical impedance spectroscopy (EIS) shows that the working electrode with thickness of 35 μm has the smallest RK, so there is the best efficiency for DSSC. In addition, the electrode life time in the bilayer structure electrode is larger than in the nano-film electrode. Thus, ZnO nano-rod and nano-film bilayer structure DSSC have superior electron transport property than ZnO nano-film DSSC. Keywords: ZnO ; nano-rod ; nano-film ; dye-sensitized solar cell