透過您的圖書館登入
IP:18.118.166.98
  • 學位論文

應用田口法於多噴嘴衝擊噴流冷卻之熱流場分析

Analysis of the Thermal and Fluid Flow Fields under Multiple-Nozzle Impingement Jet Cooling with Taguchi Method

指導教授 : 朱存權
若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

摘要


在這科技日趨進步的時代,電子元件產品朝著輕薄短小且精密化發展。當產品功率快速提升的同時,伴隨著大量的熱能產生,嚴重影響電子元件的使用壽命,因此電子元件冷卻的探討也成了一門重要的課題。其中以衝擊噴流搭配具優良熱傳導性質的散熱鰭片在局部快速冷卻方面,具有極大的熱傳散熱效益,對大功率電子元件散熱具實際應用價值值得進一步探討。   本文採用數值模擬的方式,搭配田口法探討在不同噴流條件下最有效的散熱效果。結合繪圖軟體Solid Works及計算流體力學軟體FLUENT對固定形狀及加熱量的散熱鰭片進行分析,並採用田口法針對噴嘴數,噴嘴入口流速、噴流角度及噴嘴至散熱鰭片頂端距離等條件做探討,了解影響衝擊噴流冷卻之熱流特性。研究中顯示噴嘴入口流速的增加可有效的降低鰭片熱阻值,但隨著流速的增加,熱阻遞減的幅度也變得較小。在噴嘴口與散熱鰭片距離中顯示距離太遠或太近皆會影響鰭片散熱的效果,本研究的散熱模組依模擬結果顯示最佳的距離為48~64mm。在噴流角度方面由模擬結果得知,將角度控制在發熱晶片中心點至邊緣1/2位置為最佳。在噴嘴數方面當噴流角度接近90°時,四噴嘴能夠有效的進行散熱但當角度變大時,因四個噴嘴同時向中心點噴流,在接近散熱源時會有相互干擾的渦流產生,導致散熱效應不如雙噴嘴流。整體而言,噴嘴數目及角度搭配必須同時考量,才得以獲得最佳的效果。因此採用田口法分析,得到最佳參數組合為A1B3C2D2,而參數對熱阻影響大小排列為:噴嘴入口流速>噴流角度>衝擊距離>噴嘴數

並列摘要


In the era of technological progress increasingly, electronic components develop towards compact size and precision. As the power of the electronic product quickly raises, it accompanies with a large amount of heat generation. The high heat generation effect significantly shortens the life of electronic components. Therefore developing the cooling module has become an important topic. Among these studies, the impingement jet integrated with the heat sink with excellent thermal conductivity properties provides a large heat reduction effect for local rapid cooling .   In this study, the thermal and flow field phenomena for a heat sink with constant heat input under multiple-nozzle impingement jet cooling are investigated with computational fluid dynamics software FLUENT combined with computer aided design software SolidWorks. Taguchi method is also utilized to analyze the effects of nozzle inlet velocity, number of nozzles, jet angle and distance from nozzle to the top heat sink. The results show that increase of the nozzle inlet velocity can effectively reduce the thermal resistance of heat sink. However with the increase in flow rate, decrease of the magnitude of the thermal resistance becomes slowly. Distance from the nozzle to the top of the heat sink too far or too close will diminish the cooling effect. According to the numerical simulations, a better choice is between 48~64mm. In terms of the jet angle, controlling the angle for jet flow towards the middle point between the center and the edge of the wafer is the best choice. Investigation of the nozzle number, four-nozzle type can effectively dissipate heat when the angle is near 90 degrees. The jet flows create circulations around the central area when the jet flows towards the center of heat sink. This phenomenon results in a higher thermal resistance. Overall, number of nozzles and jet-angle must be considered at the same time to obtain a better cooling effect. According to Taguchi method analyses, the optimal parameters are A1B2C3D4, and the effect of parameter is ranked as jet velocity>jet>angle>impingement distance>number of nozzle.

參考文獻


[1]劉興和,「柱型散熱鰭片幾何尺寸影響熱傳性能之研究」,中原大學,碩士論文,民國93年。
[2]邱建穎,「衝擊熱傳研究及有限時間熱力循環」,崑山科技大學,碩士論文,民國91年。
[8]Lytle D. , Webb B. W. “Air jet impingement heat transfer at low nozzle-plate spacings,” Int. J. Heat Mass Transfer , Vol. 37 , No. 12 , pp. 1687-1697 , 1995.
[11]Jung-Yang San., and Mao-De Lai., “Optinum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets,” International Journal of Heat and Mass Transfer, Vol. 44, No. 2, pp. 3998-4007, 2001.
[12]C. S. Woei, J. Y. Jena, and C. S. Fei, “Heat transfer of impinging jet-array over convex-dimpled surface,” International Journal of Heat and Mass Transfer, Vol. 49,pp. 3045–3059. August 2006.

延伸閱讀