透過您的圖書館登入
IP:18.119.248.159
  • 學位論文

Geometric quantization of fermions and complex bosons

Geometric quantization of fermions and complex bosons

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

並列摘要


Geometric quantization is a subject of finding irreducible representations of certain group or algebra and identifying those equivalent representations by geometric means. Geometric quantization of even dimensional fermionic system has been constructed based on the spinor representation of even dimensional Clifford algebras. Although geometric quantization of odd dimensional fermionic system has not been done, the existence of spinor representations in odd dimension indicates that the geometric quantization is possible. In quantum field theory, charge conjungation can be defined on complex bosons and fermions. Without interaction, the particles and anti-particles essentially have same physical properties. In this thesis, we will first recall the setup of geometric quantization of even dimensional fermion and bosons. Then we will show how to quantize odd dimensional fermion. After that, charge conjungation on complex fermion and boson will be defined and the remaining effort will be put on how to identify the Hilbert spaces produced by different charge conjungations.