透過您的圖書館登入
IP:3.129.69.151
  • 學位論文

Profile-guided loop parallelization and co-scheduling on GPU-based heterogeneous many-core architectures

Profile-guided loop parallelization and co-scheduling on GPU-based heterogeneous many-core architectures

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

並列摘要


The GPU-based heterogeneous architectures (e.g., Tianhe-1A, Nebulae), composing multi-core CPU and GPU, have drawn increasing adoptions and are becoming the norm of supercomputing as they are cost-effective and power-efficient. However, programming such heterogeneous architectures still requires significant effort from application developers using sophisticated GPU programming languages such as CUDA and OpenCL. Although some automatic parallelization tools utilizing static analysis could ease the programming efforts, this approach could only parallelize loops 100% free of inter-iteration dependency (i.e., determined DO-ALL loops) because of imprecision of static analysis. To exploit the abundant runtime parallelism and take full advantage of the computing resources both in CPU and GPU, in this work, we propose a new user-friendly compiler framework and runtime system, which helps Java applications harness the full power of a heterogeneous system. It unveils an all-round system design unifying the programming style and language for transparent use of both CPUs and GPUs, automatically parallelizing all kinds of loops, scheduling workloads efficiently across CPU and GPU resources while ensuring data coherence during highly-threaded execution. By means of simple user annotations, sequential Java source code will be analyzed, translated and compiled into a dual executable consisting of CUDA kernels and multiple Java threads running on GPU and CPU cores respectively. Annotated loops will be automatically split into loop chunks (or tasks) being scheduled to execute on all available GPU/CPU cores. To guide the runtime task scheduling, we develop a novel dynamic loop profiler which generates the program dependency graph (PDG) and computes the density of dependencies across iterations through a hybrid checking scheme combining intra-warp and inter-warp analyses. Implementing a GPU-tailored thread-level speculation (TLS) model, our system supports speculative execution of loops with moderate dependency densities and privatization of loops having only false dependencies on the GPU side. Our scheduler also supports task stealing and task sharing algorithms that allow swift load redistribution across GPU and CPU. We have carried out several experiments to evaluate the profiling overhead and up to 11 real-life applications to evaluate our system performance. Testing results show that the overhead is moderate compared with the sequential execution and prove that almost all the applications could benefit from our system.