透過您的圖書館登入
IP:18.218.188.95
  • 學位論文

Two-photon photochemical crosslinking-based fabrication of protein microstructures

Two-photon photochemical crosslinking-based fabrication of protein microstructures

若您是本文的作者,可授權文章由華藝線上圖書館中協助推廣。

並列摘要


One of the challenges in tissue engineering is to fabricate scaffolds which can mimic the natural microenvironments of cells. In a cell niche, biophysical and mechanical cues are crucial factors influencing cell functions. Given the complexity of natural extracellular matrix (ECM) engineered ECMs providing controllable biophysical and mechanical cues are appealing both in enhancing the understanding of cell-matrix interaction and in controlling cell fates in vitro. The ultimate goal of our study is to establish a platform as an engineered ECM by fabricating customized solid protein microstructures from solution using two-photon photochemical crosslinking, a novel laser-based freeform fabrication technique. In this study, protein structures varying from submicron lines, 2D micropatterns and microporous matrices, to 3D micropillars were successfully fabricated, demonstrating freeform fabrication capability with two-photon photochemical crosslinking. Two-photon fluorescent imaging and scanning electron microscope (SEM)-based microstructural characterization revealed that power, scan speed, total exposure time and concentrations of protein (bovine serum albumin) and photosensitizer (rose Bengal) in the solution were crucial processing parameters in this fabrication technique. Quantitative imaging analysis showed that porosity of protein matrices was highly dependent on processing parameters including power, scan speed, number of cycles in time series scan and protein concentrations in the solution. An atomic force microscopy (AFM)-based step change nano-compression test was used to measure the reduced elastic modulus of 3D viscoelastic protein micro-pillars fabricated, as a pilot study. Microporous protein matrices and 3D micropillar arrays fabricated with two-photon photochemical crosslinking can be used as engineered ECM for future study in cell-ECM interactions.