透過您的圖書館登入
IP:3.129.73.141
  • 學位論文

探討玻尿酸接枝雙性明膠多功能磁性微胞形成類軟骨組織塊於關節軟骨組織修復之研究

Cartilage tissue engineering using cartilage tissue-mimetic pellets with multifunctional magnetic hyaluronic acid-graft-amphiphilic gelatin microcapsules

指導教授 : 陳三元

摘要


關節軟骨相關病症為老年退化性疾病或肥胖併發疾病中常見議題。關節軟骨自行修復速度緩慢,臨床上主要施打抗發炎、止痛藥物和軟骨細胞外基質成分(例如玻尿酸)來舒緩初期症狀。組織工程將軟骨修復分為三部分:細胞支架、細胞、和生長因子。其中細胞支架提供物理性支撐和細胞生長環境;細胞則多選用取得容易的軟骨前驅型細胞(例如間充質幹細胞)以及相應細胞成熟所需生長因子。然而,細胞支架難以同時兼具良好物理支撐性和高含水能力,支架的細胞相容性、孔洞大小等特性亦會影響修復軟骨效果,且生長因子半生期短、利用效率低,亦須避免高濃度過度刺激細胞分化。為解決以上困境,研究人員將載體和水膠等元素加入支架形成複合式組織工程:載體包覆生長因子可延長其半衰期並有緩慢釋放藥物的功能,水膠材料優異的含水率則可增加細胞相容性,光敏感或溫度敏感型水膠支架材料更可以以微創手術注入軟骨磨損區域,有利於臨床應用。此外,近年文獻指出磁性奈米粒子除了可受外部磁場引導將細胞固定於患部、提升細胞利用率外,持續的磁場可幫助細胞貼附於細胞支架;另外物理性刺激(例如靜磁場、磁導剪切力)於前驅型細胞分化初期亦有促進軟骨相關基因表現的效果。 本研究整合以上概念,結合生物材料、細胞與軟骨刺激分化的特長,由玻尿酸接枝雙性明膠形成的磁性微胞和軟骨細胞構成類軟骨組織塊。玻尿酸為軟骨細胞外基質主要成分之一、吸水性強,於類組織塊形成初期時可幫助細胞成團、提供穩定的細胞生長環境。玻尿酸接枝於雙性明膠,透過雙乳化法與超順磁奈米氧化鐵製備出具中空結構的雙層磁性微胞,雙層磁性微胞可同時攜帶親水與疏水兩種物質,於藥物裝載上有高度可變動性,且有藥物緩慢持續釋放之功能。研究結果顯示磁性微胞於軟骨細胞的利用性高、協同形成的類組織塊呈球狀,具良好磁感應能力、可快速移近外加磁場,長時間培養下,磁性微胞並不影響軟骨細胞增生情形,且類組織塊深處細胞仍保有細胞活性。研究中探討靜磁場和磁導剪切力兩種物理性刺激對類組織塊的影響,結果顯示於類組織塊培養前期(7天),磁性微胞可大幅刺激第二型膠原蛋白的表現,於類組織塊培養後期(14天),細胞趨於穩定,第二型膠原蛋白表現量整體降低,有靜磁場和磁導剪切力兩種物理性刺激的類組織塊於第二型膠原蛋白有明顯較高的表現量,且能使維持第一型膠原蛋白和SOX9的低基因表現量,分別進行有靜磁場或磁導剪切力刺激的細胞表現則無明顯差異。偵測培養液中細胞分泌的糖胺多糖(GAG),顯示有兩種物理性刺激的類組織塊於培養後期有最高的分泌量。總結,本研究發展出的類軟骨組織塊由玻尿酸接枝雙性明膠形成的磁性微胞和軟骨細胞構成,具磁導引、感應外加磁場應力、具藥物緩慢釋放等功能,且能維持軟骨細胞正常細胞表現,具有極高的發展潛能。

並列摘要


Causing by sustained wear and tear, articular cartilage defect is a common disorder occurs with age. Having less blood and nutrition supply, the reconstruction of cartilage is limited by chondrocytes on their own. To recover the defects, tissue engineering has focusing on cells, cell-related growth factor or drug, and scaffold in corporation to create a cartilage-like environment. In this study, we come out a brand-new design - cartilage tissue-mimetic pellets, which was developed by hyaluronic acid-graft-amphiphilic gelatin microcapsules (HA-AGMCs) and chondrocytes collectively. Microcapsules were fabricated with hyaluronic acid (HA)-grafted amphiphilic gelatin (AG) and superparamagnetic iron oxide (SPIOs) using double emulsion. Microcapsules are shaped in spherical hollow structure with high SPIOs and drug loading efficiency, and demonstrate a high cell availability and sustained drug release profile. In the cartilage tissue-mimetic pellets experiments, pellets have no influence on cell proliferation, and are high viable in the middle of oxygen-deficient site. Beside outstanding cell guiding ability, SPIOs provide pellets two kind of mechanical environment in this study. Gene expression exhibit HA-AGMCs help the ECM related gene expression at the beginning of pellets formation, and static magnetic field and magnet-derived shear stress together make pellets showed the highest cartilage tissue-specific gene expression.

參考文獻


[1] Johnstone, Brian, et al. "Tissue engineering for articular cartilage repair–the state of the art." Eur Cell Mater 25.248 (2013): e67.
[2] Sophia Fox, Alice J., Asheesh Bedi, and Scott A. Rodeo. "The basic science of articular cartilage: structure, composition, and function." Sports health 1.6 (2009): 461-468.
[3] Grässel, Susanne, and Julia Lorenz. "Tissue-engineering strategies to repair chondral and osteochondral tissue in osteoarthritis: use of mesenchymal stem cells." Current rheumatology reports 16.10 (2014): 1-16.
[4] Schwinté, P., et al. "Osteoarticular regenerative nanomedicine: advances and drawbacks in articular cartilage regeneration implants." Austin J. Nanomed. Nanotechnol 2.4 (2014): 13.
[5] Cayot, Philippe, and Gérard Tainturier. "The quantification of protein amino groups by the trinitrobenzenesulfonic acid method: a reexamination." Analytical biochemistry 249.2 (1997): 184-200.

延伸閱讀