透過您的圖書館登入
IP:18.222.3.255
  • 學位論文

利用介電質電漿轉化二氧化碳之研究

CO2 conversion in a dielectric barrier discharge plasma

指導教授 : 廖英皓

摘要


本實驗將不同濃度之載體氣體(氬氣、氮氣、氦氣)與二氧化碳混合,並利用同心圓形式介電質電漿源轉化二氧化碳,電漿源的接地電極為不銹鋼鐵網,其包覆於石英管外,而高電壓輸出端由不銹鋼螺條組成。利用利薩如方法得知產生電漿所需消耗的能量約為25瓦,本研究亦使用氣象層析儀量測二氧化碳和一氧化碳的濃度,以進行後續實驗分析。 本實驗發現隨著載體氣體的濃度增加,二氧化碳轉化率和一氧化碳生成率亦隨之增加。其中在載體氣體分別為氮氣、氦氣和氬氣條件下,其二氧化碳轉化率分別為6.82%、5.1%和5.75%,而一氧化碳生成率亦分別為7.0%、4.71%和5.69%。在電漿源內填入玻璃珠後,其二氧化碳轉化率和一氧化碳轉化率均會下降,此一結論與文獻相反。此一結果的原因,推測是由於氣體通入電漿源的反應時間減少和點起電漿所需的能量下降所致。

並列摘要


The present study is to apply a coaxial dielectric-barrier plasma discharge to CO2 conversion. Three different carrier gases, argon, helium and nitrogen are used. The plasma reactor consists of a ground electrode, made of a wire mesh wrapped outside of the quartz tube, and a stainless steel screw rod as the power electrode inside the quartz tube. Based on Lissajous approach, the plasma power is around 25W. Concentrations of CO2 and CO are measured with gas chromatography. It is found that the absolute conversion of CO2 and the yield of CO increase with concentration of the carrier gas. The absolute conversion of CO2 is 6.82%, 5.1% and 5.75% for nitrogen, helium and argon. The yield of CO is 7.0%, 4.71% and 5.69% for nitrogen, helium and argon. The CO2 conversion efficiency and CO yield are found to decrease when the quartz tube is packed with glass beads, in contrary to what is found in literature studies. The deteriorated results are due to a combination of the reduced residence time of gas flow in the plasma reactor and the decreased plasma power.

並列關鍵字

Carbon dioxide DBD conversion Carbon monoxide carrier gas glass beads

參考文獻


[1] The Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, .Key World Energy Statistics, The International Energy Agency, 2014.
[2] Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L., Carbon Capture and Storage, Cambridge University Press, New York, 2005.
[3] Toth, F. L., Geological Disposal of Carbon Dioxide and Radioactive Waste: A Comparative Assessment, Springer, Austria, 2011.
[4] Kondratenko, E. V., Mul, G., Baltrusaitis, J., Larrazabal, G. O., Perez-Ramirez, J., “Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes.” Energy and Environmental Science, 6, 3112–3135, 2013.
[5] Mikkelsen, M., Jorgensen, M., Krebs, F. C., “The teraton challenge. A review of fixation and transformation of carbon dioxide.” Energy and Environmental Science, 3, 43–81, 2010.

延伸閱讀